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13 APPENDIX A – MODELLING 

13.1 Overview 

In this chapter a large array of modelling tools is presented in detail. In particular:  

In Section 13.2 we present a basic overview of numerical approaches used in Monte Carlo 

reliability simulations. In particular, the use of Markov chains to model component failure and 

restoration is showcased along with suitable network searching methods suitable for 

computing Energy Not Served in complex distribution systems involving numerous assets and 

protection devices. Relevant reliability indices used throughout the report such as Expected 

Energy Not served (EENS), Customer Interruption (CI) etc. are also introduced. The section 

closes with an illustrative case study where a typical Monte Carlo reliability analysis is 

performed and the relevant metrics computed.  

In section 13.3 we introduce the concept of chronological Monte Carlo reliability assessment. 

This approach utilises the principles illustrated in Section 13.2, but enables the 

accommodation of storage elements by modelling their chronological operation. Regarding 

the calculation of EENS for a given storage plant and network, a novel probabilistic calculation 

framework is proposed based on performing a large number of chronological simulations of 

the network equipped with the storage plant under investigation.  Given that the storage plant’s 

state-of-charge is coupled to preceding operating points and outage events, a chronological 

simulation of the system is necessary to compute EENS for a given scenario of transformer 

outages. Since these outages are random in nature with respect to their time of occurrence 

and the duration until they are restored, a probabilistic Monte Carlo framework sampling a 

large number of plausible events is required to infer the underlying system EENS. To alleviate 

the increased computational burden that this method may entail, an efficient bisection search 

algorithm is proposed to minimize the number of iterations performed until the Equivalent Load 

Carrying Capability value is computed. 

In Section 13.4 a novel planning model is introduced enabling the balancing between 

investment costs and the impact of high impact low probability events. Risk-averseness to 

adverse faults is modelled via the spectral risk metric known as Condition Value-at-Risk 

(CVaR). The presented tool allows the planner to identify the most cost-efficient investment 

decisions in conventional line reinforcements and DSR schemes while ensuring that the 

operational cost arising due to adverse faults, which are being modelled in a probabilistic 

fashion on the basis of historical data, is bounded according to the planner’s risk profile. This 

model constitutes a fundamental extension to the traditional cost-benefit planning framework, 

enabling the probabilistic consideration of faults in the interest of building more cost-efficient 

networks.  

In Section 13.5 we introduce relevant reliability metrics employed in distribution network 

reliability analysis and outline the main idea of cost-benefit planning frameworks. We 

demonstrate how the optimal redundancy level that cost-efficiently balances cost of 

investment against the interruptions can be computed. This forms the basis of the current 

distribution planning philosophy and is expanded in the following sections. 
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In Section 13.6 we introduce a stochastic planning model, capable of minimizing expected 

investment cost across a scenario tree while allowing investment in transformers and DSR 

schemes. This type of modelling is helpful in cases where increased uncertainty characterises 

the long-term evolution of the distribution system. Examples of such cases include uncertainty 

surrounding long-term demand growth, penetration of distributed generation resources and/or 

electric vehicles etc. It is clear that such cases do arise in practice and a framework capable 

of identifying strategic actions to manage this uncertainty is required. The proposed model 

makes use of the inter-temporal resolution of uncertainty to identify the optimal investment 

strategy which encompasses cost-efficient contingent actions to cope with adverse scenario 

realisations. The adopted approach constitutes a necessary step beyond deterministic 

planning tools typically used and is bound to become increasingly relevant as distribution 

systems face increasing uncertainty and identifying cost-efficient flexibility-driven investments 

becomes an essential component of planning. This stochastic model is capable of quantifying 

the option value of DSR. 

In Section 13.7 we introduce a stochastic planning model similar to section 13.6, but this time 

focusing on the operational flexibility made possible by investing in Soft Open Points (SOP). 

Modelling of this technology   requires the consideration of reactive power flows. This model 

is particularly useful for planning in cases where voltage constraints are a concern. In 

particular, the large penetration of distributed generation (DG) sources can lead to voltage 

excursions beyond the network limits. The presented model can identify the optimal 

investment strategy incorporating re-conductoring with multiple conductor types and 

investment in SOPs to resolve the voltage rise problems when facing uncertainty regarding 

the long-term growth of DG. The full mathematical formulation is presented in detail and 

explained. 

In Section 13.8 we present an alternative approach to dealing with long-term uncertainty. In 

contrast to sections 13.6 and 13.7 where the objective is the minimisation of expected cost 

across multiple scenarios, in this model the planner’s objective is the minimisation of the 

maximum regret. This constitutes a highly risk-averse planning approach where scenarios are 

defined independent of probabilities and the planner’s objective is the minimisation of regret 

experienced if the future was perfectly known. As in the stochastic case, the min-max model 

is capable of identifying attractive opportunities for strategic actions, recognising and valuing 

the flexibility embedded in smart grid assets such as DSR.  The full mathematical formulation 

is presented with a focus on uncertainty on long-term demand growth.   

In section 13.9 we analyse the impact that the DSR’s capability to operate in islanding mode 

has on its security contribution. Various illustrative case studies are performed to demonstrate 

the impact of this capability in terms of two different reliability metrics; Equivalent Firm 

Capacity and Equivalent Load Carrying Capability. 

Section 13.10 introduces the modelling framework that describes the operation of Dynamic 

Line Rating (DLR).  DLR is a promising technology which can release latent network capacity 

through near-real-time consideration of the impact that environmental variables have on 

overhead lines’ thermal ratings. Subsequently, an operation model is introduced capable of 
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modelling the operation of a network fitted with DLR. The model is capable of capturing the 

dependence between wind and thermal capacity increase which becomes extremely relevant 

in cases where the network has wind energy sources. Some example simulations are 

presented to demonstrate the model capabilities and the relevant of the different parameters 

considered. 

In Section 13.11 showcases the modelling of Photovoltaic (PV) distributed resources. Different 

consideration such as the impact of cloud dispersion of PV output are discussed and their 

modelling is presented. In addition, the section showcases the way that a very large population 

of cloud conditions can be sampled and relevant reliability indices can be calculated within a 

Monte Carlo framework for the purpose of evaluating reliability performance of a system in the 

presence of large PV penetration.  

Section 13.12 presents a probabilistic computation approach for computing relevant reliability 

indices in a system with different possible protection system outcomes.  

In Section 13.13 presents a stochastic operational tool for the modelling of corrective actions. 

A quasi-steady-state approach has been adopted where different fault events are split in 

stages and the optimal control action at each time step is identified and engaged for the 

purpose of minimising demand curtailment across the system. 

This work is further supplemented in Section 13.14 where a planning model capable of 

considering the aforementioned capability for corrective control. The planner is capable of 

investing in network assets, backup generation systems, corrective control as well as buy 

energy from the upstream grid. This model is suitable for identifying the optimal investment 

schedule across different assets enabling planners to identify opportunities for conventional 

reinforcement deferral through relying on post-fault actions and  

Section 13.15 introduces an alternative to centralised network planning based on the fact that 

different customer types have different capability for load shifting and sensitivity to market 

prices. This is made possible through the large-scale rollout of smart meters where consumers 

are capable of communicating their individual preferences and flexibility. This information can 

be used by the planner to identify a more cost-efficient investment plan in order to maximise 

social welfare across its customer base. The full mathematical formulation for carrying out 

distribution planning in the presence of customers with different price elasticities and 

valuations of demand curtailment is presented. 

13.2 Numerical approach using Monte Carlo Simulation 

In order to calculate the cost of interruptions, a range of reliability techniques can be used. 

Two main approaches to evaluating security have been implemented in this study: 

 Numerical approach based on Sequential Monte Carlo simulation 

 Analytical approach based on Markov models, see section 13.5, 

In some cases, the problems are too complex to be formulated and solved analytically and 

therefore require the application of numerical techniques to find the solutions, for instance in 
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cases of common-mode failures or if the problems involve time-dependent events. Monte-

Carlo simulation is a widely used numerical technique in network reliability analysis. 

Implemented Continuous Time Sequential Monte Carlo simulation approach is based on 

randomly generating asset faults and simulating supply interruption restoration and asset 

repair processes. The model can take into account overlapping faults i.e. an eventual other 

fault or faults during the repair of the original fault. In addition, asset maintenance is modelled 

with a possibility of other overlapping faults occurring during maintenance. Restoration 

process considers fault clearing, network reconfiguration for fault isolation and supply 

restoration, transfer capability of adjacent networks, use of alternative method of supply such 

as mobile generation and finally asset repair and return to service. Multiple years are modelled 

chronologically until a desired confidence level of accuracy is achieved. Model records 

parameters used for calculation of statistics, like probability and cumulative density functions 

as well as expected values of CI, CML, ENS, cost of interruption, repair and use of alternative 

supply options. The remaining part of this section describes the calculation of reliability indices 

and gives more details about modelling. 

 

Reliability indices evaluation through sequential Monte Carlo simulation 

Sequential Monte Carlo simulation is a method in which time-dependent system operation is 

simulated by sampling stochastic sequences and durations of system states. The system 

states are sampled according to the Markov model of each system component. By randomly 

sampling durations of component states, the stochastic sequence of system states can then 

be produced. The estimate of reliability indices for chronological system operation is computed 

as below: 

�̂�(𝐻) =
1

𝑁
∑𝐻(𝑋𝑖)

𝑁

𝑖

 

𝐻 is the estimation function of a reliability index such as Energy Not Supplied (ENS) or 

Customer Interruptions (CI). N is the number of simulated years, and 𝑋𝑖 represents the 

chronological system state sequence and duration for year i. 

Stochastic sampling of system state for a pre-set time period (here we use a year but other 

time horizons can be used if required) is described as follows: 

(1) Generate the initial state of each system component according to the probability 

distribution of their own Markov model. 

(2) Sample the transition time from the current state to the next possible state for each 

component. For those components that have multiple possible transitions, choose the 

state with the shortest transition time. 

(3) List and sort all component transition times in an ascending order. The set of all 

component states is the current system state and its duration is the shortest 

component transition time Tmin. Set system simulation time as T=Tmin. 
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(4) Identify status for each node in the system and conduct power flow optimisation so 

that, at each load point, reliability indices can be computed for the current system 

state. 

(5) Deduct the shortest transition time from all component transition times and update the 

component state as the next sampled state. Sample a new transition time for the 

component with zero transition time for the new state. 

(6) Repeat step 3 and set system simulation time as T=T+Tmin. Repeat step 4 to 

compute the reliability indices of the system state. If for a load point, the last status is 

“not supplied”, then increase the customer interruption counter by 1; otherwise, it is 

recognised as a continued interruption. 

(7) Repeat steps 3 to 6 until system simulation time T reaches the simulation horizon (one 

year). Evaluate and record the reliability indices of the system for this year. 

The expected value and probability distribution of reliability indices can be evaluated by 

repeating the above procedure for N years. Convergence of the simulation is calculated using 

confidence intervals or coefficients of variation, which also serve as stopping criteria for the 

simulation. 

As discussed before, the reliability indices used for measuring the DNOs performance in the 

UK are ENS, CI and CML (Customer Minute Lost). Time-sequential Monte Carlo simulation 

allows for calculating the real-time information of outages at each load point. An illustrative 

example of a load point outage can be seen in Figure 13.1. In this example, the sampled 

outage covers 3 system states with the critical time points at t1, t2, t3 and t4, and system 

unserved power varying in time across P1, P2 and P3. 

 

Figure 13.1: An illustrative example for load point outage in real time 

The ENS for this outage is: 

𝐸𝑁𝑆 = 𝑃1 ∗ (𝑡2 − 𝑡1) + 𝑃2 ∗ (𝑡3 − 𝑡2) + 𝑃3 ∗ (𝑡4 − 𝑡3) = 𝑃1 ∗ 𝑇1 + 𝑃2 ∗ 𝑇2 + 𝑃3 ∗ 𝑇3 

The CML index for this load point is calculated as follows: 
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𝐶𝑀𝐿𝑖 =
𝑃1
𝐷1
∗ 𝑁 ∗ 𝑇1 +

𝑃2
𝐷2
∗ 𝑁 ∗ 𝑇2 +

𝑃3
𝐷3
∗ 𝑁 ∗ 𝑇3 

Where 𝐷𝑖 is the load point demand for the system state 𝑖 and 𝑁 is the number of customers 

at the load point. 

System CML is adjusted as follows (note the multiplication by 60 to convert hourly values of 

𝐶𝑀𝐿𝑖 to minutes): 

𝐶𝑀𝐿𝑠𝑦𝑠𝑡𝑒𝑚 =
∑ 𝐶𝑀𝐿𝑘𝑘

∑ 𝑁𝑘𝑘
∗ 60 

where 𝑘 is the index of load point. 

Finally, the CI index for the load point is found as: 

𝐶𝐼𝑖 = max (
𝑃1
𝐷1
,
𝑃2
𝐷2
,
𝑃3
𝐷3
) 

System CI is adjusted as follows (note the multiplication by 100 to convert the values per 

customer into the value per 100 customers): 

𝐶𝐼𝑠𝑦𝑠𝑡𝑒𝑚 =
∑ 𝐶𝐼𝑘𝑘

∑ 𝑁𝑘𝑘
∗ 100 

where 𝑘 is the index of load point. 

 

Node status in network operation 

In the Monte Caro simulation a graph representation is used where nodes represent network 

components and arcs logical linkages between nodes. Node status is a dynamic property of a 

node in network operation and is affected by its own node state as well as by the states of 

other nodes. Each node can be in one of three possible states: 

 “Supplied” (Green): a supplied node means that the component at this node is not faulty 

and a live route from this node to a power source exists in which none of the nodes is 

isolated or interrupted. 

 “Interrupted” (Red): an interrupted node represents that the component at this node is 

faulty but not yet isolated (fault clearing state) OR another node connected to this node is 

interrupted (affected by fault clearing). This status is usually found in a network where a 

fault happens and the associated feeder circuit breaker trips the branch so that other 

branches are protected. All nodes in this branch are interrupted and backup switching is 

not yet ready. 

 “Isolated” (Black): an isolated node represents that the component at this node is faulty 

and is being repaired. It is internally isolated by opening the switchgear at the ends of the 

component. In this status, a backup switching action in network is available for previously 

interrupted nodes so that the open circuit breakers and normally open points can be closed 

if a live route to a power source exists.  
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A network searching method, Depth-first technique, is applied to the whole network for 

identifying the connectivity of each component in network. 

The algorithm progresses through the network according to the following steps: 

(1) Tag all nodes as white (unchecked status) 

(2) Tag all nodes with components in “repair state” or “maintenance state” as black 

(isolated status) 

(3) Tag all nodes with components in “fault clearing state” as red (interrupted node) 

(4) From each interrupted node, iteratively search and tag every connected node as red 

(interrupted) unless it is already black (isolated) or the component associated with that 

node is a circuit breaker or NOP 

(5) From each node with a power source, iteratively search and tag every connected 

node as green (supplied) unless it is black (isolated) or red (interrupted) 

After the above steps are completed, the status of all components can be identified except for 

those tagged as white (unchecked), which are regarded as unsupplied nodes.  

Power flow optimisation 

In distribution network planning and operation the rated capacities of lines, circuit breakers 

and transformers need to be carefully considered. When there is a fault, switching actions may 

occur to restore the supply to interrupted customers through other sources. In this situation 

however the capacity constraints of system components may limit the system restoration 

ability. Therefore, an optimisation algorithm is applied in our model to minimise the energy not 

served while considering all component constraints. The input parameters for load flow 

calculations are as follows: 

 Available distributed generation at node i: 𝐺𝑖 

 Load level at node i: 𝐿𝑖  

 Power flow from node i to node j: 𝑓𝑙𝑖𝑛𝑘𝑖𝑗 

 Connectivity between node i and node j: 𝜋𝑙𝑖𝑛𝑘𝑖𝑗 

Objective function: 

𝑀𝑖𝑛 𝑓 = 𝑀𝑖𝑛 {∑𝐿𝑜𝑎𝑑𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡𝑖} 

Constraints: 

0 ≤ 𝐺𝑖 ≤ 𝐺𝑖𝑚𝑎𝑥  

−𝑓𝑙𝑖𝑛𝑘𝑖𝑗𝑚𝑎𝑥 ≤ 𝑓𝑙𝑖𝑛𝑘𝑖𝑗 ≤ 𝑓𝑙𝑖𝑛𝑘𝑖𝑗𝑚𝑎𝑥  

𝐺𝑖 + 𝐿𝑜𝑎𝑑𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡𝑖 − ∑{𝜋𝑙𝑖𝑛𝑘𝑖𝑗 ∙ 𝑓𝑙𝑖𝑛𝑘𝑖𝑗} = 𝐿𝑖 

For isolated and interrupted nodes, the flow limits of the connected arcs/links are set to zero. 
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Network component modelling 

This section discusses the modelling of network components to enable modelling of node 

states using Markov processes. Colour tagging and Depth-first network searching algorithm 

are then applied in node status identification to simulate system failure restoration. 

The model allows for selecting which component can fail (while for the others it is assumed 

that no failure can occur), as well as considering different failure modes including short circuit 

failure, open circuit failure and failure to respond when supposed to. 

When a component fails, the simulation proceeds through the following steps: 

Identify failure location 

Determine the switching of the corresponding circuit breakers to isolate the fault area 

Restore as many load points as possible when backup is available 

Restore supply when repair is complete 

In the following we describe how different network components are modelled in Monte Carlo 

simulations. The status of a network component is modelled as a Markov process. Four 

general component states are used to represent the component operational status: 

 “Up state”: the component is working correctly; 

 “Fault clearing state”: the component is faulty; the fault has been cleared by opening the 

corresponding feeder circuit breaker, but the switching action to isolate the fault for 

restoration is not yet ready; 

 “Repair state”: switching action has been taken to isolate the component for repairing, 

interrupted load points are resupplied if possible; 

 “Maintenance state”: the component is undergoing scheduled maintenance and is 

disconnected. 

 

Figure 13.2 illustrate four Markov models for transformer and lines. They are used for 

representing distribution transformers, primary and bulk supply substations, and lines and 

cables. 
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Distribution transformer with circuit breaker 
 

 

Transformer with maintenance 
 

 

Two parallel transformers  

Line with switchgear 
Figure 13.2: Illustration of four Markov models for transformers and lines 

 

Illustrative case studies 

In order to illustrate the use of analytical and numerical techniques in reliability analysis, a 

range of studies has been carried out on a typical radial HV distribution network, as shown in 

Figure 13.3. The HV network is connected to an EHV network through a primary substation 

which is composed of busbars, two 33/11 kV transformers and circuit breakers (CB). At the 

11 kV level, the substation is connected to feeders where a protection circuit breaker is 

installed. When there is a short circuit failure in lines or cables, the corresponding CB will trip 

the downstream branch instantly without interrupting upstream or other branches. 

The 11 kV network is configured as a radial network with a normally open circuit breaker that 

connects adjacent branches for back-feeding during an outage. All network sections are 

equipped with normally closed switchgears at one or both sides. When a failure is identified, 

the switching action will isolate the failed section by opening the corresponding switchgears 

and the affected load points can be resupplied through the adjacent branch. At each load 

point, an 11/0.4 kV transformer is connected through a circuit breaker or fuse, which will 

disconnect the load point if the LV transformer fails, not affecting the rest of the network. 
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Figure 13.3: An example of radial HV distribution network 

In our reliability assessment model the network is represented as shown in Figure 13.4, where 

nodes in the graph represent system components: EHV feeder, circuit breakers, 33/11 kV 

transformers, lines with sectionalising switches, NOPs, LV transformers with circuit breakers 

and load points. Arcs represent logic linkages between the elements of the network. 

 

 

Figure 13.4: Graph representation of HV network for reliability assessment 

The proposed method is used to obtain probability distributions of network reliability indices. 

A case study is presented here in which the assumed line section length is 0.25 km, network 

feeder capacity conforms to the N-1 criterion, no emergency generation is available for load 

points, and 30 minutes is the assumed duration of manual network switching. 

Figure 13.5 shows the PDF (probability distribution function)bars and CDF (cumulative 

distribution function) curves for ENS for line failure rates of 2%, 5%, 10% and 20% per km and 

year. Depicted range of ENS values is between 0 and 10 MWh/year. 
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Figure 13.5: PDF and CDF of ENS for failure rate of 2%, 5%, 10% and 20%/km.year 

The results suggest that the probability of annual ENS being zero is up to 95% for low failure 

rates (associated with underground cables), while it is about 57% for high failure rates (more 

common for overhead lines). The PDF bars in Figure 13.5 follow an exponential distribution. 

It can further be seen from the CDF chart that there is a 95% likelihood that ENS is lower than 

0.1 MWh/year for the failure rate of 2%, 0.8 MWh/year for 5%, 1.4 MWh/year for 10% and 

2.2 MWh/year for 20% failure rate. 

Figure 13.6 shows PDF bars and CDF curves for CI for network failure rates of 2%, 5%, 10% 

and 20% per km and year, with CI ranging between 0 and 250 occ./100customer/year. 

 

Figure 13.6: PDF and CDF of CI for failure rate of 2%, 5%, 10%, 20%/km.year 

The probability of annual CI being 50 occ./100customer.year is around 5% for low failure rates, 

but is as high as 32% for high failure rates. The PDFs again suggest an exponential 

distribution. The CDF chart suggests that the probability of CI index being 50 

occ./100customer.year or below is 99.9% for failure rate of 2%, 99.2% for 5%, 96.9% for 10% 

and 88.8% for 20%. 

Figure 13.7 shows the PDF bars and CDF curves for the CML index, again looking at failure 

rates of 2%, 5%, 10% and 20% per km and year. 
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Figure 13.7: PDF of CML for failure rate of 2%, 5%, 10%, 20%/km.year 

According to the results, the probability of annual CML being at the level of 

10 min/customer.year is about 2% for low failure rates and about 16% for high failure rates. 

The CDF curves further suggest that the probability of CML being at or below 

20 occ./customer.year is 98.6% for 2% failure rate, 96.3% for 5%, 92.5% for 10% and 83.7% 

for 20%. 

Expected ENS, CI and CML 

A set of further case studies has been carried out for different values of input parameters 

shown in Table 13.1. 

Table 13.1: Case studies parameters 

Parameter Values 

Failure rate for overhead lines (%/km.year) 5 and 20 

Failure rate for underground cables (%/km.year) 2 and 10 

Switching time (minutes) 2 (automatic) and 30 (manual) 

Restoration time (hours) 3 (mobile generation) and 24 (repair) 

Section length (km) 0.25 and 1 

Loading level N-1 and N-0 

 

Table 13.2 shows the resulting expected values of ENS for different HV network reliability 

parameters, switching times and loading levels. 

Table 13.2: EENS for different HV network reliability parameters, switching time and loading level 

Network ENS 
(MWh/year) 

Failure Rate (%/km.year) Automatic switching Manual switching 

MTTR 3h MTTR 24h MTTR 3h MTTR 24h 

N-1 N-0 N-1 N-0 N-1 N-0 N-1 N-0 

Section length 
0.25 km 

2% 0.00 0.10 0.00 0.71 0.04 0.17 0.04 0.84 

5% 0.01 0.25 0.01 1.85 0.10 0.40 0.11 1.93 

10% 0.02 0.53 0.02 3.71 0.22 0.85 0.22 4.21 

20% 0.03 0.97 0.04 7.69 0.43 1.66 0.45 8.52 

Section length 1 km 2% 0.01 0.40 0.01 2.87 0.17 0.68 0.17 3.24 

5% 0.03 1.07 0.04 7.51 0.46 1.68 0.45 8.22 

10% 0.07 2.03 0.11 15.16 0.90 3.35 0.88 16.86 

20% 0.15 4.03 0.31 29.97 1.74 7.29 1.95 35.84 
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Table 13.3 shows the results for the expected values of CI for different HV network reliability 

parameters, switching times and loading levels. 

Table 13.3: ECI for different HV network reliability parameters, switching time and loading level 

Network ECI 
(occ./100 
cust.year) 

Failure Rate 
(%/km.year) 

Automatic switching Manual switching 

MTTR 3h MTTR 24h MTTR 3h MTTR 24h 

N-1 N-0 N-1 N-0 N-1 N-0 N-1 N-0 

Section length 
0.25 km 

2% 3 3 3 4 3 3 3 4 

5% 7 8 7 10 7 8 7 9 

10% 14 15 14 19 14 15 14 20 

20% 27 29 27 39 27 30 28 41 

Section length 
1 km 

2% 11 12 11 15 11 12 11 15 

5% 29 31 27 38 31 30 28 40 

10% 54 59 55 78 57 58 55 79 

20% 109 124 110 156 110 128 111 166 

 

Finally, Table 13.4 shows the expected values of CML for different HV network reliability 

parameters, switching times and loading levels. 

Table 13.4: ECML for different HV network reliability parameters, switching time and loading level 

Network ECML 
(min/customer.y

ear) 

Failure Rate 
(%/km.year) 

Automatic switching Manual switching 

MTTR 3h MTTR 24h MTTR 3h MTTR 24h 

N-1 N-0 N-1 N-0 N-1 N-0 N-1 N-0 

Section length 
0.25 km 

2% 0 1 0 6 1 1 1 7 

5% 0 2 0 14 2 3 2 15 

10% 0 4 0 29 4 7 4 34 

20% 1 8 1 61 8 15 9 69 

Section length 
1 km 

2% 0 3 0 23 3 6 3 26 

5% 1 8 1 59 9 15 9 66 

10% 1 16 2 119 17 29 17 136 

20% 3 32 6 237 33 64 37 290 

 

Comparison between sequential Monte Carlo simulation and analytical method 

Differences between results obtained using sequential Monte Carlo simulation and the 

analytical method applied to the same network are presented in Table 13.5. 

Table 13.5: Difference of EENS obtained by Monte Carlo simulation and by analytical method 

Network ENS 
(MWh/year) 

Failure 
Rate 

Automatic switching Manual switching 

MTTR 3h MTTR 24h MTTR 3h MTTR 24h 

N-1 N-0 N-1 N-0 N-1 N-0 N-1 N-0 

Section length 
0.25 km 

2% -4.1% -4.9% -2.8% -8.5% -7.2% -3.6% -0.1% -0.3% 

5% -2.8% -1.2% -0.2% -3.9% -4.1% -8.7% -0.4% -8.7% 

10% 5.3% 5.0% -10.5% -3.8% -0.1% -3.1% -0.1% -0.4% 

20% -5.9% -4.6% 2.4% -0.5% -1.5% -4.7% 2.4% 0.7% 

2% 2.0% -2.1% 0.1% -6.9% -0.9% -1.9% -1.4% -4.1% 
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Network ENS 
(MWh/year) 

Failure 
Rate 

Automatic switching Manual switching 

MTTR 3h MTTR 24h MTTR 3h MTTR 24h 

N-1 N-0 N-1 N-0 N-1 N-0 N-1 N-0 

Section length 
1 km 

5% 0.4% 5.3% 11.0% -2.8% 6.6% -3.9% 2.4% -2.8% 

10% 5.3% 0.3% 9.7% -2.0% 4.1% -4.1% -3.1% -0.5% 

20% 7.1% -0.7% 5.3% -3.4% 0.3% 4.3% 3.0% 5.5% 

 

The simulation stopping criteria for all case studies in the sequential Monte Carlo simulation 

was when a Coefficient of Variation (CoV) of 5% or less was achieved. According to the 

statistical theory, the simulation error greater than two standard deviations occurs with less 

than 5% probability. Thus, in this distribution network reliability study, the probability of 

simulation error greater than 10% of the actual value is about 5%. From Table 13.5, there are 

2 cases (out of 64) with errors greater than 10%. This corresponds to 3% of cases being 

beyond the (-10%, +10%) interval, which is within the adopted range for CoV of 5%. 

 

13.3 Storage modelling via chronological Monte Carlo simulation 

The central step in calculating the contribution of a particular asset to security of supply is to 

compute the system’s EENS when equipped with the asset under investigation and compare 

with the EENS in the absence of the asset. An important issue is that energy storage devices 

have “state memory” as the state of charge is coupled to the preceding operational decisions. 

Whereas DG is solely constrained by its technical and resource availability (e.g. fuel, wind 

etc.) and maximum stable generation level, the storage facility must have both enough power 

output capability and energy stored to supply the load. In other words, whereas conventional 

resources, such as DG, typically face only power constraints, storage facilities can face both 

power and energy constraints. These constraints can be independent or combined. For 

example, it is possible to have sufficient amount of energy stored but the maximum storage 

output may be less than the peak demand to be served; a power constraint arises. The 

opposite situation of an empty tank and sufficient power capability gives rise to an energy 

constraint. Naturally, there may also be cases where there is insufficient energy in the tank 

and the plant’s power output capability is less than the demand to be served; this is a case of 

a combined power and energy constraint occurrence. As a consequence of the above, the 

actual shape of the demand peak being served is important in addition to the peak magnitude. 

As a result, whereas DG contribution can be estimated using load-duration-curve-based 

methods, chronological modelling of the operation of the storage facility is essential to identify 

occurrences of power and energy constraints and quantify the unsupplied energy. Carrying 

out chronological analysis where the storage plant is operated along the time horizon under 

study is necessary to identify cases of energy and/or power constraints.  

In sequential Monte Carlo simulation, chronological system histories are synthesized by 

combining randomly-generated outage events with hourly chronological loads. Consequently, 

the system can be modelled in great detail with an accurate representation of outage duration 
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which is particularly important in the case of storage operation. The use of Monte Carlo 

simulation allows for the calculation of probability distribution of all state variables and 

ultimately the computation of EENS for a particular distribution system. The main equations 

involved in simulating a system with storage are shown below, along with the corresponding 

nomenclature. 

Nomenclature 

𝐷𝑡  Residual demand above the network transfer limit at hour 𝑡 (MW) 
𝜀 Storage device energy efficiency (scalar between 0 and 1) 
𝐸𝑡 Stored energy at the end of hour 𝑡 (MWh) 
𝐸0 Initial state-of-charge (MWh) 
𝑃𝑡 Power discharged/charged by storage device at hour 𝑡 (MW) 
𝑈𝑡 Unsupplied energy at hour 𝑡 (MW) 
𝐸𝑚𝑎𝑥  Maximum energy capability of storage plant (MWh) 
𝑃𝑚𝑎𝑥  Maximum power capability of storage plant (MWh) 
𝐶𝑡  Network capacity at hour 𝑡 (MW) 

 

Mathematical Formulation 

ENS =∑𝑈𝑡
∀𝑡

 (3.1) 

𝐸𝑡 = min(𝐸𝑚𝑎𝑥 , 𝐸𝑡−1 + 𝜀min(𝑃
𝑚𝑎𝑥 , 𝐶𝑡 − 𝐷𝑡)), if 𝐷𝑡 ≤ 𝐶𝑡 (3.2) 

𝐸𝑡 = min(𝐸𝑚𝑎𝑥 , 𝐸𝑡−1 +min(𝑃
𝑚𝑎𝑥 , 𝐶𝑡 − 𝐷𝑡)), if 𝐷𝑡 > 𝐶𝑡 (3.3) 

𝑃𝑡 = 𝐸𝑡 − 𝐸𝑡−1 (3.4) 
𝑈𝑡 = 𝐷𝑡 − 𝐶𝑡 − 𝑃𝑡  (3.5) 

 

The above formulation enables the computation of ENS. In particular, equation (3.2) holds 

when demand is below the network’s capacity limit and simulates the storage plant’s charging 

action. Note that the charging rate is capped at the plant’s charging limit and the state-of-

charge cannot surpass the plant’s energy capacity limit. Also, note that in (3.2) the impact of 

energy efficiency has been considered; some amount of charging energy is lost. Conversely, 

equation (3.3) governs storage discharging which occurs in cases where the demand to be 

served exceeds the currently-available network capacity. Equation (3.4) computes the power 

output of the storage plant as the difference between two consecutive states of charge; 

positive 𝑃𝑡 denotes charging power, while negative denotes discharging. Finally, equation 

(3.5) calculates the amount of curtailed demand as the difference between residual demand 

to be served and discharged power. Finally, Energy Not Served is calculated as the overall 

sum of unserved energy across the simulation duration, as shown in (3.1).  

Modelling asset availability 

In general, EENS is derived using a probabilistic calculation, in recognition of the stochastic 

availability of network assets. This probabilistic analysis should not only reflect the average 

availability of each component, but also the duration of each outage. Outage duration 

modelling is extremely important to be modelled in order to accurately capture the energy 

constraints that result from prolonged outages. We are interested in modelling the reliability of 

transformers. In general, a transformer’s technical availability depends on two metrics: 
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Mean Time Between Failures (MTBF) – expressed in hours 

Mean Time to Restore/Repair (MTTR) – expressed in hours. 

ELCC calculation 

Having computed the EENS for the basecase without storage, the calculation of ELCC of a 

particular storage plant is essentially a root-finding problem of solving the equation: 

𝐸𝐸𝑁𝑆∗ − 𝐸𝐸𝑁𝑆(𝐷 + 𝐸𝐿𝐶𝐶) = 0 (3.6) 

 

where D is the basecase peak demand level and EENS* denotes the basecase supply risk 

level. Several search methods exist to solve this problem; in our case the bisection root-finding 

method is employed to calculate ELCC. In brief, the bisection method repeatedly bisects a 

given search interval (in this case, it can be defined as [𝐷, 𝐷 + 𝛾𝑃𝑚𝑎𝑥], where 𝛾 > 1 given that 

ELCC can in certain cases be above 100% of the storage plant’s power capability) and selects 

the sub-interval in which the root must lie, continuously refining the search domain until a close 

match is found and the stopping criterion of the form (𝐸𝐸𝑁𝑆∗ − 𝐸𝐸𝑁𝑆(𝐷 + 𝐸𝐿𝐶𝐶))
2
< 𝜀 for 

small 𝜀 is met. 

Example simulations of storage operation 

In this section we will briefly demonstrate the main working principles of the proposed ELCC 

calculation framework. As already stated, ELCC computation involves the calculation of ENS 

across many thousands of transformer outage scenarios, sampled from exponential 

distributions with the specified Mean Time Between Failures (MTBF) and Mean Time to Repair 

(MTTR).  

In Figure 13.8 we present operation of a storage plant of power rating 2 MW and 20 MWh 

energy capacity (denoted 2 MW/10 hours) across a sampled year. The system consists of two 

10 MW transformers, each with MTBF of 1 year and MTTR of 240 hours. In the figure below 

we plot the demand time series (MW), the network status (intact, N-1 or N-2), the storage 

status (plant assumed to be perfectly reliable in this case), the storage power (MW) where 

positive values correspond to charging and negative values to discharging events, state-of-

charge (SOC) in MWh and unserved power in the bottom (MW). Peak demand is set at 13 

MW i.e. above the network N-1 limit. 
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Figure 13.8: Storage operation for a sample year. MTBF = 1 year, MTTR = 240 hours. Storage size is 2 MW/10 hours. 

As can be seen above, there is a total of 3 single outages occurring throughout the simulated 

year. In the first two cases, single outages occur in a part of the year that demand is relatively 

low. As a result, there is no need to engage the storage plant for supply support. However, 

the last fault occurs during December which experiences high demand. As a result, the storage 

plant is engaged, as evidenced by the fluctuating power (green curve) and SOC (black curve). 

At the same time, some unserved power arises due to power constraint that the storage plant 

is facing; peak residual demand to be served during this period is as high as 3 MW, whereas 

the plant’s power rating is only 2MW. This is also indicated by the fact that the SOC never 

reaches 0, i.e. although there is stored energy it cannot be supplied due to the maximum 

power rating being reached. The main principle of ES security contribution in this case is the 

periodic charging during night-time hours and subsequent discharging during high-demand 

afternoon hours. For this particular simulation, ENS = 208 MWh. 

In Figure 13.9 we show operation of the same storage plant for a different sampled year. In 

this case, there are more failures being sampled, including a double outage event. As can be 

seen below, although the single outages occur at times when no demand curtailment arises 

due to low electricity consumption levels, the double outage event inadvertently lead to high 

ENS. In particular, during the double outage the storage is incapable of accessing the 

upstream network. As a result, once the initially-stored energy is depleted, the storage plant 

can no longer support security of supply, resulting in very high demand curtailment levels. This 

is exacerbated by the long repair time of transformers; in this particular sampled realisation, 

the double outage is repaired within 200 hours. Overall ENS in this case surpasses 2000 

MWh. However, it is imperative to note that double outages are comparatively rare events and 

only very few sampled scenarios will result in such high ENS figures.  
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Figure 13.9: Storage operation for a sample year. MTBF = 1 year, MTTR = 240 hours. Storage size is 2 MW/10 hours. 

A general fact to note is that although we present annual simulations above, in practice all 

Monte Carlo realisations are simulated chronologically one after the other. This is required to 

ensure that the effect of the initial state-of-charge 𝐸0 choice is minimal. Operation has been 

split here in specific years just for the purpose of easy visualisation. 

Monte Carlo ELCC calculation 

Exploring the convergence behaviour of EENS calculation is a step of paramount importance 

to ensure that the calculated security contribution is satisfyingly close to the true underlying 

value. For this purpose, convergence behaviour analysis is undertaken to determine the 

number of Monte Carlo simulations to be performed. Naturally, the variability of the stochastic 

process as well as the relation between the stochastic process and EENS largely drive 

convergence behaviour. As an example, we show EENS convergence behaviour for the case 

where MTBF = 1 year and MTTR = 240 hours and a 2MW/10 hours storage plant is connected 

to the system. As can be seen in Figure 13.10, a few thousands Monte Carlo runs are required 

to reach convergence. It is clear that at 10,000 runs steady state behaviour has been reached 

at 38.1 MW. However, it is important to note that the particular case simulated here exhibits 

faster convergence compared to scenarios where transformer failures occur more rarely. For 

this reason, we have decided to simulate 1 million Monte Carlo runs throughout to guarantee 

good approximation of EENS. A very fast simulation algorithm has been developed and 

deployed to enable the simulation of a million years of storage operation without running into 

time and memory constraints.   
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Figure 13.10: Example Monte Carlo convergence in the calculation of EENS. 

In Figure 13.11 we show the convergence behaviour of the bisection root-finding method 

employed to identify ELCC in the case of MTBF = 1 year and MTTR = 240 hours. As shown 

in the plot below, seven iteration are required to reach the target EENS of 38.2 MWh. The 

search starts from an ELCC of 5MW, heuristically defined as the midpoint of the basecase 

secure transfer limit, and successive refinements are made until the ELCC value at which the 

basecase EENS can be reached is identified. The final computed ELCC for the 2MW/10h 

storage plant is 0.15 MW. 

 

Figure 13.11: Example convergence of the bisection root-finding method to compute ELCC.  
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13.4 Non-network technologies portfolios to increase robustness of 
distribution networks against high impact low probability events caused 
by natural hazards: A CVaR optimisation approach 

CVaR model’s mathematical formulation 

The presented model minimises the overall cost of investment in transformers and transfer 

cables that can be used to import/export power from/to neighbouring substations, along with 

the availability costs of DSR and backup generation’s fuel cost (which may include a rental 

fee). We first introduce the model nomenclature follows by the objective function and 

constraints. 

Nomenclature 

Input Parameters 

𝐶̅ Standardised size of each transfer cable [MW] 
𝐶𝑉𝑎𝑅 Conditional Value at Risk upper bound [MWh/h] 
𝐷𝑒𝑚𝑡  Demand in period t [MW] 

�̅� Maximum backup generation capacity [MW] 
𝑉𝑜𝐿𝐿 Value of lost load [₤/MW/yr] 
𝛼 CVaR confidence level [p.u.] 
𝛾 Number of DSR facilities  
𝛿 Total number of hours [h] 
𝛿𝑡 Number of hours in period t [h] 
𝜋𝐶𝑘 Investment cost of cable k [₤/yr] 
𝜋𝐷𝑆𝑅  DSR utilisation fee [₤/MWh] 

𝜋𝐷𝑆𝑅̅̅ ̅̅ ̅̅  DSR availability fee [₤/MW/h] 

𝜋𝐺  Fuel cost (and rental fee) of backup generating units [₤/MWh] 
𝜋𝑇 Investment cost of transformer [₤/MW/yr] 
𝜌𝑠 Probability of outage state s [p.u.] 
𝜏 Number of transformers  

𝜑𝑠
𝐶𝑘  Availability factor of cable k in outage state s (0 if outaged, 1 if available)  

𝜑𝑠
𝐷𝑆𝑅̅̅ ̅̅ ̅̅ 𝑖  Availability factor of DSR facility i in outage state s (0 if outaged, 1 if available)  

𝜑𝑠
𝑇𝑗

 Availability factor of transformer j in outage state s (0 if outaged, 1 if available)  

Decision Variables 

𝑎𝑡,𝑠  Demand shed in period t and outage state s above levels defined by Value at Risk 
threshold 

[MW] 

𝐶𝑘 Binary variable associated with construction of transfer cables (1 if cable k is built) 1/0 
𝐷𝑆𝑅𝑡,𝑠 Total demand side response exercised at period t in outage s (through all DSR 

facilities) 
[MW] 

𝐷𝑆𝑅̅̅ ̅̅ ̅̅  Demand side response contracted and available in every period in each facility 
(there are 𝛾 DSR facilities) 

[MW] 

𝐺𝑡,𝑠 Production of backup generation in time t and state s [MW] 

𝑃𝑁𝑆𝑡,𝑠 Power not supplied in period t during outage s [MW] 
𝑋𝑠 Substation capacity available during outage s (considering no contribution from 

DSR facilities) 
[MW] 

𝑋𝑆
𝐷𝑆𝑅 Substation capacity available during outage s (considering contribution from DSR 

facilities) 
[MW] 

𝑇 Capacity of each transformer (there are 𝜏 transformers) [MW] 
𝑧 Value at risk (VaR) [MWh/h] 

Sets 

Nc Number of substation components  
Ns Set of outage states (considering intact system)  
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Nt Set of time periods  
Nk Set of candidate cables  

 

If the substation capacity, backup generation and DSR do not suffice to cover demand in a 

particular scenario (i.e. an operating condition under a given outage), demand is curtailed at 

a cost equal to the value of lost load (VoLL) and this is shown in Eq. (4.1) (where 𝑬𝑵𝑺𝒕,𝒔 =

𝜹𝒕𝑷𝑵𝑺𝒕,𝒔). Outage probabilities 𝝆𝒔 (of each outage state Ns=2Nc, where Nc is the number of 

substation components) are calculated by using forced outage rates (FOR) of substation 

components which, in turn, are obtained from outage and repair rates. 

𝑀𝑖𝑛 𝑇,𝐶𝑘,𝐷𝑆𝑅̅̅ ̅̅ ̅̅

𝐷𝑆𝑅𝑡,𝑠,𝑃𝑁𝑆𝑡,𝑠

𝐺𝑡,𝑠,𝑋𝑠,𝑋𝑆
𝐷𝑆𝑅

𝑎𝑡,𝑠,𝑧

{𝜏𝜋𝑇 𝑇 + ∑ 𝜋𝐶𝑘 𝐶𝑘
𝑘∈𝑁𝑘

+ 𝛾𝛿𝜋𝐷𝑆𝑅̅̅ ̅̅ ̅̅ 𝐷𝑆𝑅̅̅ ̅̅ ̅̅ + ∑ 𝛿𝑡 𝜌𝑠𝜋
𝐷𝑆𝑅𝐷𝑆𝑅𝑡,𝑠

𝑡∈𝑁𝑡,𝑠∈𝑁𝑠

+ ∑ 𝛿𝑡 𝜌𝑠𝜋
𝐺 𝐺𝑡,𝑠

𝑡∈𝑁𝑡,𝑠∈𝑁𝑠

+ ∑ 𝛿𝑡 𝜌𝑠𝑉𝑜𝐿𝐿𝑃𝑁𝑆𝑡,𝑠
𝑡∈𝑁𝑡,𝑠∈𝑁𝑠

}(4.1) 

 

Eq. (4.2) shows that substation capacity (𝑋𝑠) changes in every outage state according to binary 

parameters 𝜑that represent whether a given substation equipment is outaged (𝜑 = 0) or 

available (𝜑 = 1). Eq. (4.3) considers the contribution from DSR and backup generating unit 

to substation capacity (as backup generation is used only under outage conditions, we 

consider high reliability levels associated and that all units’ contributions can be aggregated 

in a single generator). 

 

𝑋𝑠 = ∑ 𝜑𝑠
𝑇𝑗𝑇

𝑗𝜖1..𝜏

+ ∑ 𝜑𝑠
𝐶𝑘𝐶𝑘

𝑘𝜖𝑁𝑘

𝐶̅∀𝑠(4.2) 

 

𝑋𝑆
𝐷𝑆𝑅&𝐺 = 𝑋𝑠 + ∑ 𝜑𝑠

𝐷𝑆𝑅̅̅ ̅̅ ̅̅ 𝑖 𝐷𝑆𝑅̅̅ ̅̅ ̅̅

𝑖=1..𝛾

+ 𝜑𝑠
𝐺�̅�∀𝑠(4.3) 

 

The part of demand that cannot be covered through “firm” substation capacity, backup 

generation and DSR, has to be ultimately curtailed and this is shown in Eq. (4.4). DSR cannot 

be exercised beyond the contracted amount and this is shown in Eq. (4.5). Likewise, backup 

generation also presents an upper limit as shown by Eq. (4.6), which should represent 

volumes of demand that can be realistically covered through backup generating units (e.g. 

10% of peak demand). 

𝑋𝑠 + 𝐷𝑆𝑅𝑡,𝑠 + 𝐺𝑡,𝑠 + 𝑃𝑁𝑆𝑡,𝑠 ≥ 𝐷𝑒𝑚𝑡∀𝑡, 𝑠(4.4) 
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𝐷𝑆𝑅𝑡,𝑠 ≤ ∑ 𝜑𝑠
𝐷𝑆𝑅̅̅ ̅̅ ̅̅ 𝑖 𝐷𝑆𝑅̅̅ ̅̅ ̅̅

𝑖=1..𝛾

∀𝑡, 𝑠(4.5) 

 

𝐺𝑡,𝑠 ≤𝜑𝑠
𝐺�̅�∀𝑡, 𝑠(4.6) 

Transfer cables are built not only to import power from neighbouring substations, but also to 

export and support neighbouring substations if needed, and therefore capacity of transformers 

has to suffice and thus supply the peak demand and exports through transfer cables, which is 

shown in Eq. (4.7). 

 

𝜏𝑇 ≥ max{𝐷𝑒𝑚𝑡} + ∑ 𝐶𝑘
𝑘𝜖𝑁𝑘

𝐶̅(4.7) 

 

To constrain risk exposure to HILP events, we use linear representation of CVaR as shown in 

Eq. (4.8) and (4.9). 

 

𝑃𝑁𝑆𝑡,𝑠 − 𝑧 ≤ 𝑎𝑡,𝑠∀𝑡, 𝑠(4.8) 

 

𝑧 +
1

1 − 𝛼
∑

𝛿𝑡𝜌𝑠
𝛿
𝑎𝑡,𝑠

𝑡∈𝑁𝑡,𝑠∈𝑁𝑠

≤ 𝐶𝑉𝑎𝑅(4.9) 

 

We use extremely small values of 1-𝛼 in order to fully limit the impacts of events that are 

extremely rare (e.g. outage of multiple components such as transformers together with DSR 

facilities). Hence 1-𝛼 is chosen after analysing the probability density function (PDF) of ENS 

associated with a solution where Eq. (4.9) is not imposed (i.e. risk-neutral solution) and thus 

1-𝛼 is set so as to capture impacts of extreme events only which are located at the right “tail” 

of the PDF. All variables in Eq. (4.1)-(4.9) are continuous and positive except for 𝐶𝑘 that are 

binary, and the model has been implemented in FICO Xpress. 

13.5 Analytical approaches for reliability evaluation 

The main objective of reliability evaluation of distribution networks is to determine the values 

of reliability indices that measure the performance of the system in question. In this report, the 

following reliability performance indices are used: Energy Not Supplied (ENS), frequency of 

interruptions i.e. Customer Interruptions (CIs) and duration of interruptions i.e. Customer 

Minutes Lost (CML), as well as the reliability worth indices associated with the Value of Lost 

Load (VoLL) and Customer Damage Function (CDF). ENS, CI and CML are expressed 

through their expected values as well as probability and/or cumulative density functions. 

For a system of components connected in series, the outage rate is given by: 
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𝜆𝑒 = ∑ 𝜆𝑖
𝑁
𝑖=1  (5.1) 

while the average outage duration is: 

𝑟𝑒 =
∑ 𝜆𝑖𝑟𝑖
𝑁
𝑖=1

𝜆𝑒
 (5.2) 

The unavailability is given by: 

𝑈𝑒 = 𝜆𝑒𝑟𝑒 (5.3) 

where 𝜆𝑖 is the fault rate of component 𝑖, 𝑟𝑖 is the average outage duration of component 𝑖, 

and 𝑁 is the number of components connected in series. The underlying assumption here is 

that repair times are much shorter than mean times between faults. 

For parallel circuits, the outage rate and average outage duration are given by: 

𝜆𝑒 = ∑ 𝜆𝑖∏ 𝜆𝑖𝑟𝑖
𝑁
𝑗=1
𝑗≠𝑖

𝑁
𝑖=1  (5.4) 

1

𝑟𝑒
= ∑

1

𝑟𝑖

𝑁
𝑖=1  (5.5) 

The contribution to the expected annual supply-outage time is 

𝑈𝑠 = 𝜆𝑒𝑡 (5.6) 

𝑈𝑟 = 𝜆𝑒𝑟𝑢 (5.7) 

where 𝑡 is the time to transfer part of the load by switching and 𝑟𝑢 is the time needed to restore 

all supplies. Typically, 𝑟𝑢 is less than the average outage duration 𝑟𝑒 for a dual-circuit system.  

The supply outage rate due to faults on component 𝑖 overlapping with maintenance of 

component 𝑗 is given by: 

𝜆𝑚 = 𝜆𝑖𝜆𝑚𝑗𝑟𝑚𝑗 (5.8) 

And the contribution to annual supply-outage time is given by: 

𝑈𝑚 = 𝜆𝑚𝑟𝑚 (5.9) 

where 𝜆𝑚𝑗 is the maintenance outage rate of component 𝑗, 𝑟𝑚𝑗 is the duration needed for 

maintenance of component 𝑗 and 𝑟𝑚 is the average time to close down maintenance work and 

restore the circuit being maintained. 

Continuous-time Markov Chains 

Continuous-time Markov Chains (CTMC) can be used to estimate stationary probabilities of 

each discrete system state where simpler series/parallel approach cannot be used such as, 

for example, in systems with multi-state components and/or common mode failures.  

The CTMC is defined with a transition rate matrix between system states. Figure 13.12 shows 

an example of a Markov chain showing states of one main (e.g. LV feeder) and one reserve 

component (e.g. spare cable). In state 1 both components are in service and the load is 

supplied by the main component. In state 2 the main component goes out of service, while 

state 3 occurs after switching the supply onto the reserve component. 
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Figure 13.12: Markov model of LV feeder with a spare cable 

The system goes from state 1 to state 2 when the main component fails and has to be put out 

of service. The transition rate between states 1 and 2 is represented by the failure rate of the 

main component (𝜆). While system is in state 2, the load is not supplied. By isolating the main 

component and re-establishing supply through the reserve component, the system transitions 

from state 2 to state 3, with the transition rate equal to the switching rate (𝜇𝑆). After the repair 

of the main component and switching the supply back to the main component, the system 

moves from state 3 to state 1, with the transition rate equal to the repair rate of the main 

component (𝜇𝑅). The transition rate matrix is shown below: 

𝑄 = [

𝜆
𝜇𝑆

𝜇𝑅

]. (5.10) 

The long-term stationary probability of the system residing in each system state is calculated 

from equations: 

𝑄𝑃 = 0 (5.11) 

and  

∑ 𝑝𝑖
𝑁
𝑖=1 = 1. (5.12) 

where 𝑁 is the number of system states, 𝑝𝑖 is the probability of system being in state 𝑖, and 𝑃 

is the vector of system state probabilities. 

State probabilities are determined by solving the system of linear equations (5.11) and 

(5.12).20 The resulting state probabilities are: 

𝑃 =
1

𝜆𝜇𝑆+𝜆𝜇𝑅+𝜇𝑆𝜇𝑅
[

𝜇𝑆𝜇𝑅
𝜆𝜇𝑅
𝜆𝜇𝑆

]. (5.13) 

Load interruption occurs only in state 2. The expected CML (ECML) and EENS are therefore 

calculated from the probability of the system being in state 2, while the Expected CI (ECI21) 

are determined from the frequency of system transitioning from state 1 to state 2: 

𝐸𝐶𝑀𝐿 = 60 ⋅ 8760
𝜆𝜇𝑅

𝜆𝜇𝑆+𝜆𝜇𝑅+𝜇𝑆𝜇𝑅
 (5.14) 

                                                           
20  It should be noted that one of equations from (5.5.11) is omitted due to singularity. 
21  In line with the ER P2/6 definitions, Customer Interruptions (CI) are expressed as the number of 

interruptions per 100 customers. 
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𝐸𝐸𝑁𝑆 =
𝜆𝜇𝑅

𝜆𝜇𝑆+𝜆𝜇𝑅+𝜇𝑆𝜇𝑅
𝐸 (5.15) 

𝐸𝐶𝐼 = 100
𝜆𝜇𝑆𝜇𝑅

𝜆𝜇𝑆+𝜆𝜇𝑅+𝜇𝑆𝜇𝑅
 (5.16) 

Where 𝐸 is the total annual demand.  

 

On-network faults – failure effect analysis 

Figure 13.13 shows the illustration of the failure effect analysis. For a fault occurring on a 

section marked with a broken arrow, a fault breaking device (FBD) will open and after a short 

time again close the circuit breaker. Immediately after the FBD opens, the automated 

switchgear will also open to isolate the fault. In addition, automated normally open points 

(NOPs) might close to restore the supply to some customers (the lavender area in Figure 

13.13). Those customers will experience short supply interruptions (typically less than 60 

seconds) which according to current security standard do not count towards the total CI figure. 

The maintenance and repair team can manually open switchgears and close NOPs, if these 

are not automated, and resupply customers in the orange area, effectively reducing the 

isolated area to the one shown in red. Supply to some or all of customers in the red area may 

be restored by load transfer onto a lower voltage level and/or by connecting mobile generators. 

The supply to remaining customers will be restored after the fault is cleared. 

 

 

Figure 13.13: Illustration of failure effect analysis; Note 1) excludes unsupplied areas due to existing faults 

The expected annual outage time, 𝑈𝑠, due to the outage of a single component 𝑠 (or common-

mode faults or faults on busbars) is given by: 

𝑈𝑠 = 𝑝0𝜆𝑠𝑡𝑠𝑙  (5.17) 

where  

𝑝0 – probability of intact system. For systems where repair times are much shorter than the 

mean times between faults 𝑝0 is close to 1 and can be omitted. 
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𝜆𝑠 – failure rate of component 𝑠 

𝑡𝑠𝑙 – average outage duration (years) for load 𝑙 due to outage of component 𝑠. It can be the 

expected time to resupply or transfer load by switching or mean time to repair for component 

𝑠, 𝑟𝑠. 

The expected annual outage time, 𝑈𝑜, due to an overlapping fault on component 𝑗 while 

component 𝑖 is being repaired is given by: 

𝑈𝑜 = 𝑝𝑖𝜆𝑗𝑡𝑢𝑙  (5.18) 

where 

𝑝𝑖 – probability of component 𝑖 being on outage 

𝜆𝑗 – failure rate of component 𝑗 

𝑡𝑢𝑙 – average urgent outage duration (years) for load 𝑙 due to an overlapping fault on 

component 𝑗 while component 𝑖 is in the repair. This can be either the expected time to 

resupply or transfer load by switching or mean urgent repair time, 𝑟𝑢 as follows: 

𝑟𝑢 = 𝑓𝑢
𝑟𝑖𝑟𝑗

𝑟𝑖+𝑟𝑗
 (5.19) 

𝑓𝑢 – urgent repair time factor to correct the average supply outage duration due to overlapping 

faults, 0 < 𝑓𝑢 ≤ 1. In the illustrative examples it is assumed to be equal to 1. 

It is assumed that the load, not supplied until component 𝑖 is repaired, is not affected by the 

overlapping faults while loads resupplied by switching can be. 

The expected annual outage time, 𝑈3, due to overlapping fault on component 𝑘 while fault on 

component 𝑗 overlaps repair of component 𝑖 is given by: 

𝑈3 = 𝑝𝑖𝑗𝜆𝑘𝑡𝑢3𝑙 (5.20) 

where: 

𝑝𝑖𝑗 – probability of overlapping fault occurring on component 𝑗 while component 𝑖 is in repair 

𝑡𝑢3𝑙 – average urgent outage duration (years) for load 𝑙 due to an N-3 fault. This can be either 

the expected time to resupply or transfer load by switching or mean urgent repair time, 𝑟𝑢3 as 

follows: 

𝑟𝑢3 = 𝑓𝑢
𝑟𝑖𝑟𝑗𝑟𝑘

𝑟𝑖𝑟𝑗+𝑟𝑖𝑟𝑘+𝑟𝑗𝑟𝑘
 (5.21) 

The probabilities in the above expressions are calculated as follows:  

𝑝0 ≈ 1 − 𝑝𝑛−1 (5.22) 

𝑝𝑖 ≈ 𝜆𝑖𝑟𝑖 (5.23) 

𝑝𝑖𝑗 ≈ 𝜆𝑖𝑟𝑖𝜆𝑗𝑟𝑗 (5.24) 

𝑝𝑖𝑗𝑘 ≈ 𝜆𝑖𝑟𝑖𝜆𝑗𝑟𝑗𝜆𝑘𝑟𝑘 (5.25) 

𝑝𝑛−1 = ∑ 𝜆𝑖𝑟𝑖
𝑛
𝑖=1 = ∑ 𝑝𝑖

𝑛
𝑖=1 .  (5.26) 
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Power flow calculations are performed to estimate power flows and node voltages in the 

network in different conditions. For low-voltage networks the power flow also takes into 

account load diversity. The calculation is used to estimate whether a switching action will result 

in a violation of thermal and/or voltage constraints. If this is the case, the appropriate switches 

are identified and some load points are not re-supplied during the time violations might occur. 

The assumption is that a potential overload is detected by the operator investigating the 

consequences of load transfer by switching. Alternatively, load transfer at the lower voltage 

level or demand side response might enable the re-supply of load points during the time 

violations occur.  

Disconnected load and energy lost 

Assuming that fault outages occur randomly throughout the year, the average disconnected 

load (𝑃𝑎) is obtained by multiplying the difference between maximum demand (𝑃𝑚) and 

transferred demand (𝑃𝑡) by the load factor (𝐿𝐹) for the relevant period, as follows: 

𝑃𝑎 = (𝑃𝑚 − 𝑃𝑡)𝐿𝐹 (5.27) 

For common-mode faults and independent faults whose outages overlap, the relevant period 

is the whole year, while where a fault overlaps a maintenance outage, the relevant period is 

the maintenance window. 

The expected energy lost per year is the energy not supplied, ENS, multiplied by the relevant 

expected unavailability and given by: 

𝐸𝑎 = 𝐸𝑁𝑆 ⋅ 𝑈. (5.28) 

When a fault occurs which leads to a potential asset overloading, the ENS (assuming 

excessive load is disconnected or transferred) is calculated as shown in Figure 13.14, where 

demand exceeds the available network capacity R (e.g. feeder rating). If the available capacity 

is superimposed onto the Load Duration Curve (LDC), the energy above the available capacity 

line (represented by the orange area) should be curtailed. This is denoted as ENS. Multiplying 

the ENS with the appropriate probability of the condition where load shedding is necessary 

(e.g. single outage where there is not enough redundancy or double outage etc.) then allows 

for calculating the Expected Energy Not Supplied. 

 

Figure 13.14: Evaluating Energy Not Supplied 
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The expected cost of energy not supplied overall and per load point / consumer is given by 

𝐶𝐸𝐸𝑁𝑆 = 𝐶𝐹 ⋅ 𝑉𝑜𝐿𝐿 ⋅ 𝐸𝑎 , and (5.29) 

𝑐𝐸𝐸𝑁𝑆 =
𝐶𝐸𝐸𝑁𝑆

𝑁
. (5.30) 

Where 𝐶𝐹 is capitalisation factor for discount rate of 3.5% over 30 years followed by 15 years 

of 3% discount rate, VoLL is the value of lost load and 𝑁 is the number of consumers per load 

point. Over 45 years the capitalisation factor 𝐶𝐹 is around 23, which is found as the average 

value between cases where costs are incurred at the beginning and at the end of each year 

during the 45-year period. 

Optimal economic design of distribution networks 

Cost-benefit analysis (CBA) is the approach most commonly used to determine the 

economically and technically optimal design of the distribution network. Figure 13.15 shows 

the concept of the CBA approach that underpins ER P2/6. This approach balances the cost of 

outages (caused by the stochastic behaviour of the system such as e.g. component outages 

or failures) against investment and maintenance costs. Generally, the cost of outages reduces 

with increasing redundancy, as this normally mitigates the adverse effects of outages and 

reduces the duration and frequency of interruptions. However, the investment costs would 

obviously increase with the provision of increased redundancy to improve the reliability 

performance of the network. The optimal trade-off between the cost of interruptions and cost 

of investing in network capacity i.e. redundancy is reached when the incremental cost of 

investment and maintenance is equal to the incremental benefit from reduced cost of outages. 

 

 Cost 

Optimal network Network Capacity and 
Redundancy 

Cost of 
interruptions, 
constraints, 
smart control 
and losses 

Investment and 
Maintenance 
costs 

Total cost 

 

Figure 13.15: Probabilistic cost-benefits analysis framework for distribution network operation and planning (balancing 
of network operation costs that includes cost of service interruptions, smart control and losses against cost of 

investment in network assets) 

Due to the stochastic nature of the reliability analysis used to determine the effects of supply 

interruptions, the CBA of distribution network design is fundamentally probabilistic. ER P2/6 

provides a platform for conducting such an analysis for any network reinforcement and 

development scenario. 

The effectiveness of investments with a long useful life can be estimated using the index of 

cost per kWh saved given by the expression below: 
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𝑉 =
𝐶𝑎+𝐶𝑚−𝐵𝑙

𝐸
 (5.31) 

Where 𝐶𝑎 is the capital component of not deferring expenditure for one year, 𝐶𝑚 is the cost of 

operation and maintenance, 𝐵𝑙 is the benefit of reducing losses, and 𝐸 is the expected 

reduction of energy not served (in kWh), or energy saved, in the first year. The capital 

component of not deferring expenditure for one year is given by: 

𝐶𝑎 =
𝑖

1+𝑖
⋅ 𝐶 (5.32) 

Where 𝐶 is the total capital cost and 𝑖 is the discount rate. 

 

13.6 Stochastic planning model for DSR  

In this section we introduce the stochastic planning model, capable of minimizing expected 

investment cost across a scenario tree while allowing investment in transformers and DSR 

schemes. We first introduce the mathematical symbols used, followed by the mathematical 

formulation of the optimisation problem.  

 

Nomenclature – Sets and indices 

Ω𝑀  Set of scenario tree nodes, indexed 𝑚. 
Ω𝐸   Set of epochs, indexed 𝑒. 
Ω𝑇𝑋 Set of existing transformers, indexed 𝑡. 
𝜀𝑚 Epoch to which scenario tree node 𝑚 belongs to.  

Φ𝑚
𝛾

 Time-ordered set containing all parents of node 𝑚, from the first stage up to stage  
𝜀𝑚 − 𝛾, where 𝛾 is integer 

Nomenclature – Input parameters 

𝜋𝑚 Probability of scenario tree node 𝑚. 
𝜅𝑇𝑋 Annual capital cost of transformer (£/year) 
𝜅𝐷𝑆𝑅  Annual capital cost of DSR scheme (£/year) 
𝛾𝑇𝑋 Commissioning time of a transformer. 
𝛾𝐷𝑆𝑅 Commissioning time of DSR scheme. 
𝐷𝑚
max Peak demand at scenario tree node 𝑚 (MVA). 
𝑌𝑇𝑋 Size of transformer (MVA). 
𝑌𝐷𝑆𝑅  Contract size of DSR scheme (MVA). 
𝛼 Availability of DSR scheme ∈ [0,1]. 
𝜁 Security standard ∈ [0,1]. 
𝑟𝑒  Cumulative discount factor for investment cost at epoch 𝑒. 
𝑟 Discount rate. 
𝑦𝑒
∗ Index of first year of epoch 𝑒; by convention the very first year of the study horizon is 0 i.e. 𝑦1

∗ = 0. 
𝑦𝑒
∗∗ Index of last year of epoch 𝑒. 

Nomenclature – Decision variables 

𝐵𝑚
𝑇𝑋  Binary variable signifying investment in a new transformer at scenario tree node𝑚. 
𝐵𝑚
𝐷𝑆𝑅  Binary variable signifying investment in DSR scheme at scenario tree node𝑚. 

�̃�𝑚
𝑇𝑋 Aggregate binary state variable denoting presence of new transformer at node 𝑚. 

�̃�𝑚
𝐷𝑆𝑅 Aggregate binary state variable denoting presence of DSR scheme at node 𝑚. 
𝑃𝑚 Amount of power that can be imported from the grid at node 𝑚(MVA). 

Mathematical Formulation 



 

352 
 

min
𝐵𝑇𝑋,𝐵𝐷𝑆𝑅

{ ∑ 𝜋𝑚𝑟𝜀𝑚(𝐵𝑚
𝑇𝑋 + 𝐵𝑚

𝐷𝑆𝑅)

𝑚∈Ω𝑀

}  

(6.1) 

Subject to 

(|Ω𝑇𝑋| + �̃�𝑚
𝑇𝑋 − 𝜁)𝑌𝑇𝑋 ≥ 𝑃𝑚 , ∀𝑚 (6.2) 

𝑃𝑚 ≥ 𝐷𝑚
max − 𝛼�̃�𝑚

𝐷𝑆𝑅 , ∀𝑚 (6.3) 

�̃�𝑚
𝑇𝑋 = ∑ 𝐵𝑚

𝑇𝑋

𝜙∈Φ𝑚
𝛾𝑇𝑋

 
, ∀𝑚 

(6.4) 

�̃�𝑚
𝐷𝑆𝑅 = ∑ 𝐵𝑚

𝐷𝑆𝑅

𝜙∈Φ𝑚
𝛾𝐷𝑆𝑅

 
, ∀𝑚 

(6.5) 

𝑟𝑒 = ∑
1

(1 + 𝑟)𝑖−1

𝑦𝑒
∗∗

𝑖=𝑦𝑒
∗

 , ∀𝑒 

(6.6) 

 

The objective function (6.1) involves the minimization of expected discounted investment cost, 

expressed as the sum of investment in DSR and transformers across all scenario tree nodes, 

multiplied by the corresponding probability of occurrence. For each node, the appropriate 

discounting factor is also applied in order to model the time value of money and the fact that 

each stage spans several years. Constraint (6.2) states that the amount of energy that can be 

imported from the upstream network is defined by the security standard applied, the size and 

number of existing transformers as well as the number of newly-built transformers. Constraint 

(6.3) states that the amount of power that can be imported must be greater or equal to the 

maximum demand to be served, as dictated by the current scenario tree node, minus the 

amount that demand can be reduced through the DSR scheme, if commissioned. Equation 

(6.4) states that the number of newly-built transformers available at node 𝑚 is equal to the 

aggregated number of new transformers built over all previous epochs of the corresponding 

scenario pat, while considering commissioning delays due to build time. A similar relation is 

imposed on DSR schemes via constraint (6.5). Finally, equation (6.6) determines the 

cumulative discount factor for each stage of the scenario tree.  This computation is carried out 

on the basis that assets’ lifetime is greater study period, but larger horizon can be 

accommodation with straightforward modifications.  

13.7 Option Value of Soft Open Point 

In this section we introduce the stochastic planning model, capable of minimizing expected 

investment and operational cost across a scenario tree while allowing investment in 

conventional asset and Soft Open Points (SOP). We first introduce the mathematical symbols 

used, followed by the mathematical formulation of the optimisation problem. 

Nomenclature – Sets and indices 

Ω𝐶  Set of normally-open points, indexed 𝑐 
Ω𝐸  Set of epochs, indexed𝑒 
Ω𝐷𝐺  Set of distributed generation units, indexed𝑔 
Ω𝐿  Set of distribution lines, indexed𝑙 
Ω𝛭  Set of scenario-tree nodes, indexed 𝑚 
Ω𝑁  Set of system buses, indexed 𝑛 
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Ω𝑃𝑆 Set of primary substations 
Ω𝑞  Set of typical days, indexed𝑞 

Ω𝑇  Set of demand periods, indexed 𝑡 

ε𝑚 Epoch to which scenario-tree node 𝑚 belongs 

Φ𝑘(𝑚) 

Time-ordered set containing all parent nodes of scenario-tree node𝑚, from the first epoch up 

to epoch ε𝑚 − 𝑘 

 

Nomenclature – Input parameters  

γ𝐵  Annuitized investment cost for reconductoring a distribution line 𝑙(£/year)  

γ𝑆 Annuitized SOP investment cost (£/year) 
δ𝑡 SOP efficiency factor 
η𝑓 Duration of one period (hours).  

π𝑚 Probability of scenario-tree node 𝑚 occurring. 
Ψ𝑛,𝑡 Tangent of the load angle at bus nat period 𝑡 
ζ𝑡,𝑔 Percentage output of intermittent generator 𝑔 at period 𝑡 relative to its installed capacity 

𝑏𝑙
o Line susceptance before reinforcement (pu) 

𝑏𝑙
N Line susceptance after reinforcement (pu) 
cc Cost of curtailing DG output (£/𝑝𝑢 ∙ ℎ) 
𝐹𝑚𝑎𝑥  Extra capacity, obtained from reconductoring, relative to the existing capacity (pu) 
𝐹𝑙 Existing capacity of line 𝑙 (pu) 
𝑔𝑙
o Line conductance before reinforcement (pu) 
𝑔𝑙
𝑁 Line conductance after reinforcement (pu) 
𝐼𝑛,𝑔 Signifies if generator𝑔 is connected to bus 𝑛 

𝑑𝑡,𝑛 Real power demand at bus𝑛, period𝑡 (pu) 
𝑘𝐿 Build time for distribution line 𝑙 (epochs) 
𝑘𝑠 Build time for SOP (epochs) 
𝑁𝑞 Frequency of typical day 𝑞 in a year (days) 

𝑛𝑐
𝑥  The two terminals (𝑥 = 𝑎, 𝑏) of SOP which is installed at normally-open point 𝑐 
𝑃𝑚,𝑔
𝑚𝑎𝑥  Max real power stable generation of 𝑔 (pu) 

𝑄𝑚,𝑔
𝑚𝑎𝑥  Max reactive power stable generation of 𝑔 (pu) 

𝑟ε𝑚
𝐼  Cumulative discount factor for investment cost 

𝑟ε𝑚
𝑂  Cumulative discount factor for operational cost 

𝑃𝑐
𝑚𝑎𝑥  Real power capacity of SOP installed at 𝑐  (pu) 

𝑄𝑐
𝑚𝑎𝑥  Reactive capacity of SOP installed at 𝑐  (pu) 

𝑢𝑙 Sending bus of line 𝑙 

𝑣𝑙  Receiving bus of line 𝑙 

𝑉𝑠𝑒𝑡  Voltage setpoint value at primary substation (pu) 

𝑉𝑚𝑖𝑛 Minimum voltage statutory limit (pu) 

𝑉𝑚𝑎𝑥  Maximum voltage statutory limit (pu) 

 

Nomenclature – Decision variables 

θ𝑚,𝑡,𝑛 Voltage angle corresponding to bus𝑛 (rad) 

𝐵𝑚,𝑙 Binary variable for deciding to reconductor 𝑙 
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�̃�𝑚,𝑙 State variable of reconductoring line 𝑙 

�̃�𝑚,𝑙 State variable representing the extra capacity due to reconductoring of line 𝑙 (pu) 

𝐻𝑚,𝑡,𝑐 Real power drawn by SOP at terminal 𝑛𝑐
𝑎  (pu) 

𝐻𝑚,𝑡,𝑐,𝑛
𝑄  Reactive power drawn by SOP at terminal 𝑛 (pu) 

𝑅𝑚,𝑡,𝑐  Real power drawn by SOP at terminal 𝑛𝑐
𝑏 (pu) 

𝑃𝑚,𝑡,𝑔 Real power output of unit𝑔 (pu) 

𝑃𝑚,𝑡,𝑙
𝑠  Real power flow at sending bus of line𝑙(pu) 

𝑃𝑚,𝑡,𝑙
𝑟  Real power flow at receiving bus of line 𝑙(pu) 

𝑄𝑚,𝑡,𝑔 Reactive power output of unit𝑔 (pu) 

𝑄𝑚,𝑡,𝑙
𝑠  Reactive power flow at sending bus of 𝑙 (pu) 

𝑄𝑚,𝑡,𝑙
𝑟  Reactive power flow at receiving bus of 𝑙 (pu) 

𝑆𝑚,𝑐  Binary variable for deciding to invest in SOP 

�̃�𝑚,𝑐  State variable of SOP investment 

𝑉𝑚,𝑡,𝑛 Voltage magnitude at bus𝑛 (pu) 

 

Mathematical Formulation 

𝑧 = 
min

𝐵, 𝐶, 𝐷, 𝑆
{ ∑ π𝑚
𝑚∈Ω𝑀

(𝑟ε𝑚
𝐼 ω𝑚

𝐼 + 𝑟ε𝑚
𝑂 ω𝑚

𝑂 )} (7.1) 

subject to 

ω𝑚
𝐼 = ∑ 𝐵𝑚,𝑙γ𝐵 + ∑ 𝑆𝑚,𝑐γ𝑆

𝑐∈Ω𝐶



𝑙∈Ω𝐿

 , ∀𝑚 (7.2) 

ω𝑚
𝑂 = ∑ ∑ 𝑁𝑞𝛿𝑡𝑐

𝑐 ∑ (𝑃𝑚,𝑔
𝑚𝑎𝑥𝜁𝑡,𝑔 − 𝑃𝑚,𝑡,𝑔)

𝑔∈Ω𝐷𝐺𝑞∈𝛺𝑞𝑡∈Ω𝑇

 , ∀𝑚 (7.3) 

�̃�𝑚,𝑙 = ∑ 𝐵φ,𝑙
φ∈Φ𝑘𝐿(𝑚)

 , ∀𝑚, 𝑙 (7.4) 

�̃�𝑚,𝑙 = ∑ 𝐵φ,𝑙𝐹𝑚𝑎𝑥
φ∈Φ𝑘𝐿(𝑚)

 , ∀𝑚, 𝑙 (7.5) 

�̃�𝑚,𝑐 = ∑ 𝑆φ,𝑐
φ∈Φ𝑘𝑠(𝑚)

 , ∀𝑚, 𝑐 (7.6) 

𝑃𝑚,𝑡,𝑔 ≤𝑃𝑚,𝑔
𝑚𝑎𝑥  , ∀𝑚, 𝑡, 𝑔 ∈ Ω𝑃𝑆 (7.7) 

𝑄𝑚,𝑡,𝑔 ≤ 𝑄𝑚,𝑔
𝑚𝑎𝑥  , ∀𝑚, 𝑡, 𝑔 ∈ Ω𝑃𝑆 (7.8) 

𝑃𝑚,𝑡,𝑔 ≤𝑃𝑚,𝑔
𝑚𝑎𝑥 ∙ ζ𝑡,𝑔 , ∀𝑚, 𝑡, 𝑔 ∈ Ω𝐷𝐺  (7.9) 

𝑄𝑚,𝑡,𝑔 ≤𝑄𝑚,𝑔
𝑚𝑎𝑥 ∙ ζ𝑡,𝑔 , ∀𝑚, 𝑡, 𝑔 ∈ Ω𝐷𝐺  (7.10) 

𝑃𝑚,𝑡,𝑙
𝑠 = (1 − �̃�𝑚,𝑙)[𝑉𝑚,𝑡,𝑢𝑙

2 𝑔𝑙
𝑜 − 𝑉𝑚,𝑡,𝑢𝑙𝑉𝑚,𝑡,𝑣𝑙𝑔𝑙

𝑜 ∙ 

cos(𝜃𝑚,𝑡,𝑢𝑙 − 𝜃𝑚,𝑡,𝑣𝑙)−𝑉𝑚,𝑡,𝑢𝑙𝑉𝑚,𝑡,𝑣𝑙𝑏𝑙
𝑜 sin(𝜃𝑚,𝑡,𝑢𝑙 − 𝜃𝑚,𝑡,𝑣𝑙)] 

+�̃�𝑚,𝑙[𝑉𝑚,𝑡,𝑢𝑙
2 𝑔𝑙

𝑁 − 𝑉𝑚,𝑡,𝑢𝑙𝑉𝑚,𝑡,𝑣𝑙𝑔𝑙
𝑁 cos(𝜃𝑚,𝑡,𝑢𝑙 − 𝜃𝑚,𝑡,𝑣𝑙) 

−𝑉𝑚,𝑡,𝑢𝑙𝑉𝑚,𝑡,𝑣𝑙𝑏𝑙
𝑁 ∙ sin(𝜃𝑚,𝑡,𝑢𝑙 − 𝜃𝑚,𝑡,𝑣𝑙)] 

, ∀𝑚, 𝑡, 𝑙 (7.11) 

𝑃𝑚,𝑡,𝑙
𝑟 = (1 − �̃�𝑚,𝑙)[𝑉𝑚,𝑡,𝑣𝑙

2 𝑔𝑙
𝑜 − 𝑉𝑚,𝑡,𝑣𝑙𝑉𝑚,𝑡,𝑢𝑙𝑔𝑙

𝑜 ∙ 

cos(𝜃𝑚,𝑡,𝑣𝑙 − 𝜃𝑚,𝑡,𝑢𝑙)−𝑉𝑚,𝑡,𝑢𝑙𝑉𝑚,𝑡,𝑣𝑙𝑏𝑙
𝑜 sin(𝜃𝑚,𝑡,𝑣𝑙 − 𝜃𝑚,𝑡,𝑢𝑙)] 

+�̃�𝑚,𝑙[𝑉𝑚,𝑡,𝑣𝑙
2 𝑔𝑙

𝑁 − 𝑉𝑚,𝑡,𝑢𝑙𝑉𝑚,𝑡,𝑣𝑙𝑔𝑙
𝑁 cos(𝜃𝑚,𝑡,𝑣𝑙 − 𝜃𝑚,𝑡,𝑢𝑙) 

−𝑉𝑚,𝑡,𝑢𝑙𝑉𝑚,𝑡,𝑣𝑙𝑏𝑙
𝑁 ∙ sin(𝜃𝑚,𝑡,𝑣𝑙 − 𝜃𝑚,𝑡,𝑢𝑙)] 

, ∀𝑚, 𝑡, 𝑙 (7.12) 
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𝑄𝑚,𝑡,𝑙
𝑠 = (1 − �̃�𝑚,𝑙)[−𝑉𝑚,𝑡,𝑢𝑙

2 𝑏𝑙
𝑜 − 𝑉𝑚,𝑡,𝑢𝑙𝑉𝑚,𝑡,𝑣𝑙𝑔𝑙

𝑜 ∙ 

sin(𝜃𝑚,𝑡,𝑢𝑙 − 𝜃𝑚,𝑡,𝑣𝑙)+𝑉𝑚,𝑡,𝑢𝑙𝑉𝑚,𝑡,𝑣𝑙𝑏𝑙
𝑜 cos(𝜃𝑚,𝑡,𝑢𝑙 − 𝜃𝑚,𝑡,𝑣𝑙)] 

+�̃�𝑚,𝑙[−𝑉𝑚,𝑡,𝑢𝑙
2 𝑏𝑙

𝑁 − 𝑉𝑚,𝑡,𝑢𝑙𝑉𝑚,𝑡,𝑣𝑙𝑔𝑙
𝑁 sin(𝜃𝑚,𝑡,𝑢𝑙 − 𝜃𝑚,𝑡,𝑣𝑙) 

+𝑉𝑚,𝑡,𝑢𝑙𝑉𝑚,𝑡,𝑣𝑙𝑏𝑙
𝑁 cos(𝜃𝑚,𝑡,𝑢𝑙 − 𝜃𝑚,𝑡,𝑣𝑙)] 

, ∀𝑚, 𝑡, 𝑙 (7.13) 

𝑄𝑚,𝑡,𝑙
𝑟 = (1 − �̃�𝑚,𝑙)[−𝑉𝑚,𝑡,𝑣𝑙

2 𝑏𝑙
𝑜 − 𝑉𝑚,𝑡,𝑢𝑙𝑉𝑚,𝑡,𝑣𝑙𝑔𝑙

𝑜 ∙ 

sin(𝜃𝑚,𝑡,𝑣𝑙 − 𝜃𝑚,𝑡,𝑢𝑙)+𝑉𝑚,𝑡,𝑢𝑙𝑉𝑚,𝑡,𝑣𝑙𝑏𝑙
𝑜 cos(𝜃𝑚,𝑡,𝑣𝑙 − 𝜃𝑚,𝑡,𝑢𝑙)] 

+�̃�𝑚,𝑙[−𝑉𝑚,𝑡,𝑣𝑙
2 𝑏𝑙

𝑁 − 𝑉𝑚,𝑡,𝑢𝑙𝑉𝑚,𝑡,𝑣𝑙𝑔𝑙
𝑁 sin(𝜃𝑚,𝑡,𝑣𝑙 − 𝜃𝑚,𝑡,𝑢𝑙) 

+𝑉𝑚,𝑡,𝑢𝑙𝑉𝑚,𝑡,𝑣𝑙𝑏𝑙
𝑁 cos(𝜃𝑚,𝑡,𝑣𝑙 − 𝜃𝑚,𝑡,𝑢𝑙)] 

, ∀𝑚, 𝑡, 𝑙 (7.14) 

(𝑃𝑚,𝑡,𝑙
𝑠,𝑟 )

2
+ (𝑄𝑚,𝑡,𝑙

𝑠,𝑟 )
2
≤ [𝐹𝑙 + �̃�𝑚,𝑙]

2 , ∀𝑚, 𝑡, 𝑙 (7.15) 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑚,𝑡,𝑛 ≤ 𝑉𝑚𝑎𝑥  , ∀𝑚, 𝑡, 𝑛 − {1} (7.16) 
𝑉𝑚,𝑡,1 = 𝑉𝑠𝑒𝑡 , ∀𝑚, 𝑡 (7.17) 

𝑅𝑚,𝑡,𝑐 ≤𝑃𝑐
𝑚𝑎𝑥 ∙ �̃�𝑚,𝑐  , ∀𝑚, 𝑡, 𝑐 (7.18) 

𝐻𝑚,𝑡,𝑐 ≤𝑃𝑐
𝑚𝑎𝑥 ∙ �̃�𝑚,𝑐  , ∀𝑚, 𝑡, 𝑐 (7.19) 

|𝐻𝑚,𝑡,𝑐,𝑛
𝑄 | ≤ 𝑄𝑐

𝑚𝑎𝑥 ∙ �̃�𝑚,𝑐  , ∀𝑚, 𝑡, 𝑐 (7.20) 

∑ 𝑃𝑚,𝑡,𝑔𝐼𝑛,𝑔 − ∑ 𝑃𝑚,𝑡,𝑙
𝑟

𝑙∈{Ω𝐿|𝑣𝑙 = 𝑛}

− ∑ 𝑃𝑚,𝑡,𝑙
𝑠

𝑙∈{Ω𝐿|𝑢𝑙 = 𝑛}

=

𝑔∈Ω𝑔

 

+𝑑𝑡,𝑛 + ∑ (𝐻𝑚,𝑡,𝑐 − 𝑅𝑚,𝑡,𝑐𝜂𝑓)

𝑐∈{𝛺𝐶|𝑛 = 𝑛𝑐
𝑎
}

+ ∑ (𝑅𝑚,𝑡,𝑐

𝑐∈{𝛺𝐶|𝑛 = 𝑛𝑐
𝑏
}

−𝐻𝑚,𝑡,𝑐𝜂𝑓) 

, ∀𝑚, 𝑡, 𝑛 (7.21) 

∑ 𝑄𝑚,𝑡,𝑔𝐼𝑛,𝑔 − ∑ 𝑄𝑚,𝑡,𝑙
𝑟

𝑙∈{Ω𝐿|𝑣𝑙 = 𝑛}

− ∑ 𝑄𝑚,𝑡,𝑙
𝑠

𝑙∈{Ω𝐿|𝑢𝑙 = 𝑛}

=

𝑔∈Ω𝑔

 

+𝛹𝑛,𝑡𝑑𝑡,𝑛 + ∑ 𝐻𝑚,𝑡,𝑐,𝑛
𝑄

𝑐∈{𝛺𝐶|𝑛 = 𝑛𝑐
𝑎 𝑜𝑟𝑛 = 𝑛𝑐

𝑏
}

 

, ∀𝑚, 𝑡, 𝑛 (7.22) 

 

The objective function is given by (7.1) describing the minimization of the discounted expected 

investment (7.2) and operational (7.3) cost. Constraints (7.4) and (7.6) define the state 

variables that aggregate all investment decisions taken in previous epochs while also 

considering the corresponding commissioning delays. Constraints (7.7) and (7.8) set the 

upper limits for the real and reactive power that flow through the primary substation 

transformer, while (7.9) and (7.10) represent the real and reactive generation of DG units. 

Constraints (7.11)-(7.14) express the AC power flow equations in the form of a disjunctive 

formulation dependent on state variable B̃m,l in order to capture the effect that reconductoring 

has on a line’s electrical characteristics bl andgl. Note that different variables are used to 

model the flow at the sending and receiving ends of each; differences between these variables 

represent losses over the line.  Constraint (7.15) states that real and reactive power flows 

cannot exceed the line’s thermal rating. This constraint can be relaxed and expressed linearly 

or approximated in a piecewise-linear form. Constraint (7.16) defines the statutory voltage 

limits for all system buses, with the exception of the substation busbar (n = 1) where the OLTC 
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keeps the voltage at a set-pointVset,as in (7.17). Modelling the OLTC in this manner 

guarantees that the optimal value of the substation voltage will not be affected by any other 

bus voltage across the network, given that the OLTC does not have visibility of network 

parameters.  Constraints (7.18) - (7.20) impose the upper bounds for the real and reactive 

power that a SOP can absorb or generate. The position of the SOP in the network is defined 

by its two terminals (or ports) nc
a and nc

b corresponding to the normally open pointc. Then, 

the variables Rm,t,candHm,t,cthat can only assume positive values, are used to model the 

ability of a SOP to transfer active power in any direction between its two terminals with 

efficiencyηf. The SOP can also absorb or generate reactive power at any of its two terminals. 

Finally, (7.21) and (7.22) ensure application of the second Kirchhoff law at every system bus. 

 

13.8 Integrating uncertainty into security standards: Min-max regret approach 

This appendix outlines the min-max regret methodology employed for determining the optimal 

network reinforcement decisions under uncertainty in demand growth. 

For clarity purposes, a simple 2-bus general network is used in the presented formulation. The 

first bus corresponds to the primary of a MV/LV substation while the second bus corresponds 

to the point of connection of the demand. The planning problem involves the determination of 

the optimal capacity of the transformer and the distribution feeder connecting the two buses. 

For simplicity reasons, a DC power flow approximation is used. The examined investment 

problem is a multi-stage one, meaning that decisions about investment in transformer and 

feeder capacity are taken at different snapshots of the future horizon of the problem. 

The min-max regret approach first solves a deterministic version of the problem for each of 

the different demand growth scenarios. For this reason, Section 1 below presents this 

deterministic formulation and Section 2 details the adopted min-max regret optimisation. 

 

Section 1: Deterministic formulation 

Objective function: 

min𝑓(𝒙) = min∑ (𝑢𝑠
𝑙𝑛 ∗ (𝐶𝑠

𝑙𝑛,𝑓𝑥
+ 𝐶𝑠

𝑙𝑛,𝑣𝑟 ∗ 𝐹𝑠
𝑙𝑛) + 𝑢𝑠

𝑡𝑟 ∗ (𝐶𝑠
𝑡𝑟,𝑓𝑥

+ 𝐶𝑠
𝑡𝑟,𝑣𝑟 ∗ 𝐹𝑠

𝑡𝑟))𝑆
𝑠=1   (8.1) 

The objective function (1) represents the total investment cost of the network. The first term 

represents the total cost of feeder capacity, while the second one represents the total cost of 

transformer capacity. 

Decision variables: 

𝑢𝑠
𝑙𝑛, 𝑠=1,.., 𝑆 

𝑢𝑠
𝑡𝑟, 𝑠=1,.., 𝑆 

𝐹𝑠
𝑙𝑛, 𝑠=1,.., 𝑆 

𝐹𝑠
𝑡𝑟, 𝑠=1,.., 𝑆 
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𝒙 denotes the vector of all decision variables of the problem 

Constraints: 

−(𝐹𝑙𝑛,𝑂 + ∑ 𝐹𝑠
𝑙𝑛𝑟

𝑠=1 ) ≤ 𝑃𝑟
𝑑𝑒𝑚 ≤ (𝐹𝑙𝑛,𝑂 + ∑ 𝐹𝑠

𝑙𝑛𝑟
𝑠=1 )   ,   𝑟=1,.., 𝑅 (8.2) 

−(𝐹𝑡𝑟,𝑂 + ∑ 𝐹𝑠
𝑡𝑟𝑟

𝑠=1 ) ≤ 𝑃𝑟
𝑑𝑒𝑚 ≤ (𝐹𝑡𝑟,𝑂 + ∑ 𝐹𝑠

𝑡𝑟𝑟
𝑠=1 )   ,   𝑟=1,.., 𝑅 (8.3) 

Constraints (2) and (3) represent the maximum flow limits on the feeder and the transformer 

respectively, dictated by the respective available capacity. 

0 ≤ 𝐹𝑠
𝑙𝑛 ≤ 𝑢𝑠

𝑙𝑛 ∗ 𝐹𝑠
𝑙𝑛,𝑚𝑎𝑥

   ,   𝑠=1,.., 𝑆 (8.4) 

0 ≤ 𝐹𝑠
𝑡𝑟 ≤ 𝑢𝑠

𝑡𝑟 ∗ 𝐹𝑠
𝑡𝑟,𝑚𝑎𝑥

   ,   𝑠=1,.., 𝑆 (8.5) 

0 ≤ ∑ 𝐹𝑠
𝑙𝑛𝑆

𝑠=1 ≤ 𝐹𝑙𝑛,𝑚𝑎𝑥 (8.6) 

0 ≤ ∑ 𝐹𝑠
𝑡𝑟𝑆

𝑠=1 ≤ 𝐹𝑡𝑟,𝑚𝑎𝑥 (8.7) 

These constraints express potential maximum limits of the feeder and transformer capacity 

that can be built at each snapshot (8.4)-(8.5) and over the whole examined horizon (8.6)-(8.7). 

Nomenclature: 

𝑠: Index of investment snapshots, 𝑠=1,.., 𝑆 

𝑟: Index of time windows between snapshots, 𝑟=1,.., 𝑅 

𝑢𝑠
𝑙𝑛: Binary variable expressing whether a feeder investment is carried out at snapshot 𝑠 

(𝑢𝑠
𝑙𝑛=1) or not (𝑢𝑠

𝑙𝑛=0) 

𝑢𝑠
𝑡𝑟: Binary variable expressing whether a transformer investment is carried out at snapshot 𝑠 

(𝑢𝑠
𝑡𝑟=1) or not (𝑢𝑠

𝑡𝑟=0) 

𝐶𝑠
𝑙𝑛,𝑓𝑥

: Fixed cost of feeder investment at snapshot 𝑠 (£) 

𝐶𝑠
𝑡𝑟,𝑓𝑥

: Fixed cost of transformer investment at snapshot 𝑠 (£) 

𝐶𝑠
𝑙𝑛,𝑣𝑟: Variable cost of feeder investment at snapshot 𝑠 (£/MW) 

𝐶𝑠
𝑡𝑟,𝑣𝑟: Variable cost of transformer investment at snapshot 𝑠 (£/MW) 

𝐹𝑠
𝑙𝑛: Feeder capacity built at snapshot 𝑠 (MW) 

𝐹𝑠
𝑙𝑛,𝑚𝑎𝑥: Maximum feeder capacity that can be built at snapshot 𝑠 (MW) 

𝐹𝑙𝑛,𝑚𝑎𝑥: Maximum feeder capacity that can be built over the whole horizon (MW) 

𝐹𝑙𝑛,𝑂: Existing feeder capacity before the first snapshot (before the beginning of the examined 

horizon) (MW) 

𝐹𝑠
𝑡𝑟: Transformer capacity built at snapshot 𝑠 (MW) 

𝐹𝑠
𝑡𝑟,𝑚𝑎𝑥: Maximum transformer capacity that can be built at snapshot 𝑠 (MW) 

𝐹𝑡𝑟,𝑚𝑎𝑥: Maximum transformer capacity that can be built over the whole horizon (MW) 
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𝐹𝑡𝑟,𝑂: Existing transformer capacity before the first snapshot (before the beginning of the 

examined horizon) (MW) 

𝑃𝑟
𝑑𝑒𝑚: Active power consumption of demand at window 𝑟 (MW) 

 

Section 2: Min-max regret optimisation 

As discussed above, different demand growth scenarios are considered in order to capture 

the relevant uncertainty. Under the adopted min-max regret approach, the deterministic 

problem (8.1)-(8.7) is initially solved for each of the different scenarios separately. The optimal 

value of the decision variable vector at each scenario 𝑖 is denoted by 𝒙𝑖
∗.  

In the context of the examined problem, the min-max regret approach minimizes the regret of 

the decision maker after the realization of the actual demand growth. The value of the decision 

variable vector at the min-max regret solution is denoted by 𝒙𝑀𝑅 and is computed through the 

solution of the following optimization problem (where 𝑧 denotes a slack variable): 

Objective function: 

min
𝑧,𝒙𝑀𝑅

𝑧      (8.8) 

Constraints: 

𝑧 ≥ 𝑓(𝒙𝑀𝑅) − 𝑓(𝒙𝑖
∗),   ∀𝑖   (8.9) 

(2)-(7) for 𝒙𝑀𝑅 

 

13.9 Contribution to Security of Supply if DSR Cannot Run in Islanding 
Operation 

To illustrate the operation of DSR under islanding conditions, an example system shown in 

Figure 13.16 is used. Group demand is supplied from two circuits of capacity T and three DSR 

facilities of capacity G. Assuming that critical a circuit outage is the critical condition i.e. rating 

of one circuit is greater than the total capacity of all units than Group Demand which can be 

supplied from the example system is GD = T + 3FG where F is contribution factor of DSR 

facilities. 

 

Figure 13.16: Example system shown in one bus representation; T – transformer rating, G – DSR capacity, GD – Group 
Demand, F – contribution factor for DSR 

T T 
G G G 

 
 

 
 ~ ~ ~ 

GD=T+3FG T≥3G 



 

359 
 

Capacity outage probability table for two circuits is shown in Table 13.6 while compliance 

probability table for three DSR facilities is shown in Table 13.7. Headers C and P are state 

capacity and state probability, respectively. Ptn and Pgn denote circuits and DSR facilities 

state probabilities, respectively, for state n. 

 

Table 13.6: Capacity outage probability table for two circuits 

C P 

2T Pt1 

T Pt2 

0 Pt3 

 

Table 13.7: Compliance probability table for three DSR facilities 

C P 

3G Pg1 

2G Pg2 

G Pg3 

0 Pg4 

 

The capacity probability table shown in Table 13.8 is obtained by performing convolution of 

the circuits and DSR facilities capacity probability tables and assuming that the DSR facilities 

cannot run in the islanding operation. The Energy Not Supplied (ENS) is shown and E1, E2 

and E3 (E1≤E2≤E3) are unsupplied annual energy when T+2G, T+G and T capacity is 

superimposed on the LDC, respectively. Depending on the contribution factor E1, E2 or E3 

might be equal to zero. If contribution factor is zero then all three E1, E2 and E3 have to be 

equal to zero. E denotes the total annual energy demand. Given that Group Demand is a 

function of contribution, then E1, E2, E3, and E are functions of the contribution factor F. 

Multiplying ENS by the state probability and summing for all states EENS is obtained. 

Table 13.8: Combined capacity probability table for two circuits and three DSR facilities if DSR facilities cannot run in 
islanded mode; expected energy not supplied if Group Demand is GD = T + 3FG 

C P ENS EENS 

≥2T Pt1 0 0 

T+3G Pt2 Pg1 0 0 

T+2G Pt2 Pg2 E1 E1 Pt2 Pg2 

T+G Pt2 Pg3 E2 E2 Pt2 Pg3 

T Pt2 Pg4 E3 E3 Pt2 Pg4 

0 Pt3 E E Pt3 

 

Figure 13.17 shows the system when three DSR facilities are replaced by the equivalent firm 

capacity equal to EFC = 3FG, where F is contribution factor and G is the capacity of a single 

DSR facility. 
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Figure 13.17: Equivalent system to one shown in Figure 13.16 where three DSR facilities are replaced by firm capacity 
which never fails; T – transformer rating, GD – Group Demand, G – capacity of one DSR facility, F – contribution factor, 

EFC – Equivalent Firm Capacity 

For ELCC approach the EENS is compared with the situation if the adequate Group Demand, 

GD’ = T, is supplied by two circuits only. Table 13.9 shows capacity outage probability table 

for this case. Given that the GD’ is less than or equal to GD in Figure 13.16 the E’ is less than 

or equal to E in Table 13.8. Hence the same conclusion is valid EENS are only the same if 

contribution factor is zero in which case GD’ = GD, E’ = E and E1 = E2 = E3 = 0. 

Table 13.9: Capacity outage probability table for two circuits and expected energy not supplied if Group Demand is GD’ = 
T 

C P ENS EENS 

2T Pt1 0 0 

T Pt2 0 0 

0 Pt3 E’ E’ Pt3 

 

It should be noted that it is assumed that demand-led DSR is implicitly delivered under 

islanding condition. 

 

13.10 Dynamic Line Rating 

The impact of increased convective cooling due to wind on the bare Over Head Line (OHL) 

conductor is modelled as a function of normalised wind power output. The modelling approach 

[154] is relatively conservative as it assumes that the system must be planned to cope with 

the maximum wind power output at minimum wind speed (rated wind speed ~14 m/s). During 

the operational time scale, higher wind speed beyond the rated wind speed will provide higher 

cooling effect which increases further the dynamic capacity of the circuit. This is considered 

as additional operating margin.  

The increased thermal capacity is expressed as the ratio between the thermal capacity of the 

respective conductor with and without convective cooling due to wind. The ratio varies 

depending on many parameters, e.g. 

 Wind speed 

 Angle between wind and conductor 

 Diameter of the conductor 

 
 

 
 

T 

EFC=3FG 

T 

GD=T+3FG 
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 Ambient temperature 

The calculation of this ratio is based on the IEEE standard [159] that specifies the steady state 

heat balance. The CIGRE model, which is in principle equivalent to the IEEE model has also 

been considered.  

The equation is written as follows: 

𝐼 = √
𝑞𝑐 + 𝑞𝑟 − 𝑞𝑠

𝑅(𝑇𝑐)
 

Where 

𝐼: ampacity of the conductor 

𝑇𝑐: conductor temperature 

𝑞𝑐: convective cooling 

𝑞𝑟: radiative cooling 

𝑞𝑠 :solar heating 

 

There are two types of convective cooling effects for a bare conductor: 

Natural 

This is a cooling effect primarily caused by lower ambient temperature. However, if the 

ambient temperature is higher than the temperature of the conductor, it will contribute to 

increase of conductor temperature. The natural cooling effect can be formulated as follows: 

𝑞𝑐𝑛 = 0.0205𝜌𝑓
0.5𝐷0.75(𝑇𝐶 − 𝑇𝑎)

1.25 

Forced 

This cooling effect is primarily due to wind. It is sensitive to the wind speed, wind direction to 

the conductor, the ambient and the conductor temperature. The force cooling effect is 

calculated using following two equations: 

𝑞𝑐𝑙𝑜𝑤 = [1.01 + 0.0372(
𝐷𝜌𝑓𝑉𝑤

𝜇𝑓
)

0.52

]𝑘𝑓𝐾𝑎𝑛𝑔𝑙𝑒(𝑇𝑐 − 𝑇𝑎) 

𝑞𝑐ℎ𝑖𝑔ℎ = [0.0119(
𝐷𝜌𝑓𝑉𝑤

𝜇𝑓
)

0.6

]𝑘𝑓𝐾𝑎𝑛𝑔𝑙𝑒(𝑇𝑐 − 𝑇𝑎) 

where: 

𝜌𝑓: air density 

𝑉𝑤 :wind speed 

𝜇𝑓 : dynamic viscosity of air 

𝑘𝑓 : thermal conductivity of air 
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𝐾𝑎𝑛𝑔𝑙𝑒: wind direction factor 

D :  conductor diameter 

𝑇𝑎: ambient temperature 

𝑇𝑐:  temperature of the conductor  

The equations provide a low and high range of the forced cooling effect; in this study, the 

average value between these two is used. 

Curve fitting 

In order to calculate the DLR capacity based on the wind power output, a curve fitting approach 

was employed to derive the polynomial function of the increased thermal capacity. Two 4th 

order polynomial functions are given in the graph below (Figure 13.18) to calculate the 

increased thermal capacity as a function of wind power output for a network circuit with DLR 

capability assuming wind direction of 0 and 90 degree.  

 

Figure 13.18: Polynomial functions to calculate the increased thermal capacity  

The polynomial functions fit well with the curves. The correlation factors are above 0.996. 

These functions are later used in calculating the dynamic capacity of a network circuit with 

DLR capability. A conservative approach was adopted in the studies assuming wind direction 

of 0 degree. This leads to the lowest enhanced capacity as shown in Figure 13.18. 

Consequently, if the actual wind direction is greater than 0 degree, the temporal capacity of 

the circuits with DLR is higher and therefore may reduce the amount of DG curtailment, if any. 

13.11 Risk assessment model – PV and reverse power flows 

Cloud-cover factor distribution 

The irradiance that a PV panel receives in a given moment depends on the cloud-cover 

conditions. A distribution of historical cloud-cover conditions is used, based on cloud-cover 
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factors recorded every minute during three years22. Therefore, for time intervals in which there 

is any potential maximum irradiance the cloud factor is defined as 

𝑐𝑙𝑜𝑢𝑑𝑓𝑎𝑐𝑡𝑜𝑟𝑡 =
𝑟𝑡
𝑟𝑡

 (11.1) 

where 𝑟𝑡 is the average irradiance measurement and 𝑟𝑡 is the clear-sky irradiance in the 

interval time 𝑡.  

In some cases the measured irradiance may exceed the clear-sky irradiance due to a 

phenomenon known as the cloud-edge effect, in which the edges of clouds have a lens effect 

on the incoming solar radiation, resulting in cloud factors exceeding 1. The cloud factor is ill-

defined for time intervals with near-zero clear-sky irradiance, i.e. around sunrise and sunset: 

small irradiance measurement errors result in large fluctuations in computed cloud factors. 

Those unreliable values are ignored in the construction of the cloud-cover model distribution. 

Sampling of cloud-cover conditions 

Our probabilistic risk assessment is based on a state sampling Monte Carlo procedure in 

which cloud-cover factors are sampled simultaneously for the different PV farms with a 

variable correlation coefficient.  This method has been based on our previous work to model 

dependencies amongst generation levels at different wind farm [82]. 

The first step is to generate a correlated random sample 𝑣1, … , 𝑣5 where each value has a 

standard normal marginal distribution 𝒩(0,1). For this we use a covariance matrix defined as 

 𝐶 = (

1 𝜌 𝜌 𝜌
𝜌 1 𝜌 𝜌
𝜌 𝜌 1 𝜌
𝜌 𝜌 𝜌 1

) (11.2) 

Each element has a variance 1 and their mutual Pearson’s correlations are defined by the 

parameters 𝜌 ∈ [−1,1] (correlation between cloud conditions at the PV sites). For nearby PV 

farms, cloud conditions are expected to be highly correlated (correlation coefficient close to 

1), but not identical (correlation strictly less than 1). For the studies, we have used the value 

𝜌 = 0.9. 

The next step is to transform the values of the random sample to their target distributions. This 

is achieved by firstly converting 𝑣1, … , 𝑣5 into uniformly distributed variables between 0 and 1, 

using the probability integral transform (𝑢1, … , 𝑢5) = (𝐹𝒩(𝑣1),… , 𝐹𝒩(𝑣5)), where 𝐹𝒩 is the CDF 

of the standard normal distribution. This is followed by an inverse probability integral transform 

using the historical cumulative probability distribution of the cloud-factors here referred to as 

𝐹. This way, we obtain a sample set 𝒮 ≡ (𝒻1, … , 𝒻4) = (𝐹
−1(𝑢1),… , 𝐹

−1(𝑢4)) for the cloud cover 

at each PV site. In the case study, this probabilistic cloud cover model, combined with the 

demand curves and clear-sky irradiance pattern, results in reverse power flows that exceed 

the capacity of a single transformer (17MW) approx. 7.7% of the time. 

                                                           
22  Imperial College London, "Experiment on Photovoltaic Energy Conversion", Internal document, Dept. Elect. 

Eng., Imperial College London, London, UK 
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Risk assessment model 

The samples produced with the method above produce a set of instantaneous cloud cover 

conditions for the PV sites. Transformer faults are characterised by the fault rates, with an 

explicit provision for a common mode failure (at the distribution bus) that results in a 

simultaneous outage of both transformers. Under these considerations, the annual fault cost 

exposure is computed as the sum of the expected fault costs across all operating hours:   

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡𝑐𝑜𝑠𝑡𝑠 = ∑ (
2𝜆𝑠
8760

𝑋𝑠(ℎ) +
𝜆𝑐
8760

𝑋𝑐(ℎ))

8760

ℎ=1

 (11.3) 

where 𝜆𝑠 is the annual rate of individual transformer faults (occurrences/year) and 𝑋𝑠(ℎ) 

denotes the expected impact in a particular hour ℎ. Similarly, 𝜆𝑐 and 𝑋𝑐(ℎ) are respectively 

the annual rate and hourly impact of common mode faults. 

The expected fault costs associated with a single outage for a particular hour are computed 

with the Monte Carlo average cost over the full set of sampled cloud conditions 𝒮. Therefore,  

𝑋𝑠(ℎ) =
1

𝑁
∑𝐶𝑠(ℎ, 𝑖)

𝑁

𝑖=1

 (11.4) 

where 𝑁 is the number of samples within the sample set 𝒮 and 𝐶𝑠(ℎ, 𝑖) is the single outage 

fault cost associated with hour ℎ for the sampled cloud condition 𝑖. The value of this function 

depends on whether the remaining transformer is overloaded (and disconnected) or not. 

Therefore we may write 

𝐶𝑠(ℎ, 𝑖) = 𝜃(𝑜) ∙ 𝑐𝑠
𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑(ℎ) + (1 − 𝜃(𝑜)) ∙ 𝑐𝑠

¬𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑(ℎ) (11.5) 

where 𝜃(𝑜) represents the unit step function that returns 1 when 𝑜 > 0 and 0 otherwise, 

𝑐𝑠
𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑(ℎ) and 𝑐𝑠

¬𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑(ℎ) denote the fault cost when the remaining transformer is 

overloaded and when it is not, respectively. The event of overloading for a particular hour and 

cloud-cover sample is modelled as 

𝑜(ℎ, 𝑖) = ∑(𝒻𝑘
𝑖 ∙ 𝑟ℎ ∙ 𝑛𝑃𝑎𝑛𝑒𝑙𝑠 ∙ 𝑒𝑓𝑓 ∙ 𝑎𝑟𝑒𝑎𝑃𝑎𝑛𝑒𝑙)

4

𝑘=1

− 𝑑ℎ − 17𝑀𝑊 (11.6) 

where 𝑟ℎ denotes the clear-sky irradiation and 𝑑ℎ the load level in hour ℎ, 𝑛𝑃𝑎𝑛𝑒𝑙𝑠 is the 

number of panels per farm,  𝑒𝑓𝑓 = 0.204 is the efficiency of the panels and 𝑎𝑟𝑒𝑎𝑃𝑎𝑛𝑒𝑙 =

1.7𝑚2 the area of each panel. In addition, each panel has an upper production level set to 

320W. 

According to our fault restoration model, when there is no post-fault overloading, the fault costs 

are limited to the disconnection of 2 PV farms during the repair time 𝑟𝐸 of the faulty 

transformer. Therefore, 
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𝑐𝑠
¬𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑(ℎ) = ∑ 𝐿𝑂𝐺𝑅 ∙ 𝜇𝒻 ∙ 𝑟𝑡 ∙ 2 ∙ 𝑛𝑃𝑎𝑛𝑒𝑙𝑠 ⋅ 𝑒𝑓𝑓 ∙ 𝑎𝑟𝑒𝑎𝑃𝑎𝑛𝑒𝑙

ℎ+𝑟𝐸

𝑡=ℎ

 (11.7) 

where 𝐿𝑂𝐺𝑅 denotes the lost of revenue from generation curtailments (£/MWh). Note that the 

generation curtailments are approximated with the average cloud factor 𝜇𝒻 computed from the 

historical distribution described in the previous section.  

On the other hand, when the remaining transformer is overloaded, the fault costs consist of 

the same repair-time disconnection of 2 PV farms in addition to the disconnection of all load 

and the other 2 PV farms over the reconnection time 𝑟𝐶:   

𝑐𝑠
𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑(ℎ) = 𝑐𝑠

¬𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑(ℎ)

+ ∑ 𝐿𝑂𝐺𝑅 ∙ (𝜇𝒻 ∙ 𝑟𝑡 ∙ 2 ⋅ 𝑛𝑃𝑎𝑛𝑒𝑙𝑠 ∙ 𝑒𝑓𝑓 ∙ 𝑎𝑟𝑒𝑎𝑃𝑎𝑛𝑒𝑙)

ℎ+𝑟𝐶

𝑡=ℎ

+ 𝑉𝑂𝐿𝐿 ∙ 𝑑𝑡 
(11.8) 

 

Finally, to complete equation (11.3) in case of a common mode transformer failure, the fault 

costs are computed according to the equation: 

𝑋𝑐(ℎ) = ∑ 𝐿𝑂𝐺𝑅 ∙ (𝜇𝒻 ∙ 𝑟𝑡 ⋅ 4 ∙ 𝑛𝑃𝑎𝑛𝑒𝑙𝑠 ∙ 𝑒𝑓𝑓 ∙ 𝑎𝑟𝑒𝑎𝑃𝑎𝑛𝑒𝑙)

ℎ+𝑟𝐸

𝑡=ℎ

+ 𝑉𝑂𝐿𝐿 ∙ 𝑑𝑡 (11.9) 

 

13.12 Risk assessment model – Protection system for reverse power flows 

When the protection system is considered, the risk assessment model iterates over all 

possible protection system outputs to compute curtailment costs driven by single faults. The 

equation for the expected fault costs associated with a single outage for a particular hour then 

becomes: 

𝑋𝑠(ℎ) =
1

𝑁
∑∑𝑝𝑟𝐶𝑠(ℎ, 𝑖, 𝑟)

𝑟∈𝑅

𝑁

𝑖=1

 (12.1) 

where 𝑅 signifies the set of different protection system outcomes (i.e. defined as the number 

of PV farms successfully tripped upon activation of the protection scheme) and 𝑝𝑟 their 

respective probabilities. Note that the outcomes, and their probabilities, depend on the number 

of PV generators physically connected to the protection scheme. 

Accordingly, in the post-fault overloading is modelled as follows: 

𝑜(ℎ, 𝑖, 𝑟) = ∑(𝑦(𝑘, 𝑟) ∙ 𝒻𝑘
𝑖 ∙ 𝑟ℎ ∙ 𝑛𝑃𝑎𝑛𝑒𝑙𝑠 ∙ 𝑒𝑓𝑓 ∙ 𝑎𝑟𝑒𝑎𝑃𝑎𝑛𝑒𝑙)

4

𝑘=1

− 𝑑ℎ − 17𝑀𝑊 (12.2) 

where 𝑦(𝑘, 𝑟) returns 1 if site 𝑘 is disconnected in outcome 𝑟 of the protection scheme. 
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13.13 The Optimal Portfolio Model 

We propose to tackle the optimal portfolio problem through an optimisation model that can 

efficiently balance set of preventive and corrective measures to deal with high impact low 

probability events originated by natural catastrophes. The optimisation model fully enumerates 

N-1 and N-2 outages (so-called scenarios), recognising common mode failure probability 

caused by natural hazard. In this context, Eq. (13.1) shows probability of a double transformer 

outage (in a substation of 2 transformers) that may occur due to a flooding event (with a 

probability of 𝑃𝑟𝑜𝑏𝑓𝑙𝑜𝑜𝑑) or any other causes that affect each transformer independently (with 

a probability of 1 − 𝑃𝑟𝑜𝑏𝑓𝑙𝑜𝑜𝑑). 

𝑃𝑟𝑜𝑏𝑁−2 = 𝑃𝑟𝑜𝑏𝑓𝑙𝑜𝑜𝑑 + 𝑃𝑟𝑜𝑏𝑇1_𝑜𝑢𝑡 × 𝑃𝑟𝑜𝑏𝑇2_𝑜𝑢𝑡 × (1 − 𝑃𝑟𝑜𝑏𝑓𝑙𝑜𝑜𝑑) (13.1) 

 

The model minimises in total 6 cost components in its objective function as follows: 

 Up-front network investment or annuity cost of permanent network infrastructure 

associated with the infrastructure that functions under normal operating conditions in the 

intact system. Part of this infrastructure is also available post-contingency (except for that 

affected by the hazard); 

 Energy bought from main system which accounts for the cost related to main system 

operation and is calculated under each contingent state and the intact system. This energy 

volumes are used to supply the part of demand that is not curtailed; 

 Corrective network investment which corresponds to cables deployed under a given 

outaged state; 

 Backup generation investment which corresponds to generating units deployed under a 

given outaged state (part of their investment cost –or rent- that can be associated with a 

single outage event) 

 Fuel cost of backup generation associated with the fuel cost of operating backup units that 

function under the emergency condition; and 

 Lost load associated with demand that cannot be covered through remaining network 

infrastructure, backup generation or cables from neighbouring substations. 

Although the model is stochastic, its solutions can full comply with N-1 criterion and use 

network redundancy (rather than post-contingency actions such as backup generation and 

corrective network deployment) to prevent demand curtailment under the occurrence of 

credible (N-1) outages. In contrast, non-credible (rare) events are treated in a probabilistic 

fashion and thus covered through an optimal portfolio of measures that include post-

contingency actions. The stochastic model presents one decision stage in the beginning, 

before uncertainty is realised, and one (two-period) post-fault stage as follows: 

 Here and now, first stage: where decisions associated with up-front (permanent) network 

investment are taken  
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 Period 1, second stage: where decisions from first stage are implemented and demand is 

shed if not sufficient up-front network capacity was built (albeit it can be minimised by using 

backup generation that can be rapidly deployed). Corrective network investment is decided 

in this period (right after uncertainty is revealed), but implemented at the beginning of 

period 2. 

 Period 2, second stage: where demand is shed if not sufficient up-front network capacity 

was built, albeit it can be minimised by using both backup generation (deployed in period 

1) and corrective network investment that is implemented at the beginning of this period 

(but decided and built during period 1). 

 

Figure 13.19: scenario tree of optimal portfolio model 

 

13.14 Investing in Corrective Mode to Deal with High Impact Low Probability 
Natural Hazards 

Formulation: Main equations 

The model proposes new network infrastructure to be built in both preventive and corrective 

mode by minimising the cost of investment in preventive and corrective mode (X and Y, 

respectively), the cost of unsupplied demand (LL), the energy purchased from the main system 

(Pi) and that produced from backup generating units (Pe) in post-fault period 1 and 2 (p=1 and 

p=2), as shown by Eq. (14.1). 

Here and now 
preventive 
desicions

Corrective network 
investment 

decisions

Corrective network 
investment 

decisions

Corrective network 
investment 
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network 

investment)

Multiple 
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including 
common 

mode failure

Stage 1 Stage 2, period 1 Stage 2, period 2

Intact system scenario



 

368 
 

𝑀𝑖𝑛

{
 
 
 
 

 
 
 
 ∑ 𝜋𝑙

𝐿𝑝
𝑋𝑙

𝑙∈𝑁𝑙

+ ∑ 𝜋𝑙
𝐿𝑐𝑌𝑙,𝑠𝜌𝑠

𝑙∈𝑁𝑙𝑠∈𝑁𝑠

∑ 𝐿𝐿𝑛,𝑠
𝑝=1

𝑉𝑜𝐿𝐿𝛿𝑝=1𝜌𝑠
𝑛∈𝑁𝑛𝑠∈𝑁𝑠

+ ∑ 𝐿𝐿𝑛,𝑠
𝑝=2

𝑉𝑜𝐿𝐿𝛿𝑝=2𝜌𝑠
𝑛∈𝑁𝑛,𝑠∈𝑁𝑠

∑ 𝜋𝑛
𝐺𝑖𝜌𝑠(𝑃𝑖𝑛,𝑠

𝑝=1
𝛿𝑝=1 + 𝑃𝑖𝑛,𝑠

𝑝=2
𝛿𝑝=2)

𝑛∈𝑁𝑛𝑠∈𝑁𝑠

∑ 𝜋𝑛
𝐺𝑒_𝑣 𝜌𝑠(𝑃𝑒𝑛,𝑠

𝑝=1
𝛿𝑝=1 + 𝑃𝑒𝑛,𝑠

𝑝=2
𝛿𝑝=2) + 𝜋𝑛

𝐺𝑒_𝑓
𝑍𝑛,𝑠𝜌𝑠

𝑛∈𝑁𝑛𝑠∈𝑁𝑠 }
 
 
 
 

 
 
 
 

(14.1) 

Each post-fault period presents a supply-demand balance constraint in every node that 

maintains compliance with first Kirchhoff’s law as shown by Eq. (2) and (3). 

𝑃𝑖𝑛,𝑠
𝑝=1

+𝑃𝑖𝑛,𝑠
𝑝=1

= 𝐷𝑒𝑚𝑛 − 𝐿𝐿𝑛,𝑠
𝑝=1

+ ∑ 𝐹𝑙,𝑠
𝑝=1

𝑙∈𝑁𝑙|𝑇𝑜𝑁𝑜𝑑𝑒(𝑙)=𝑛

− ∑ 𝐹𝑙,𝑠
𝑝=1

𝑙∈𝑁𝑙|𝐹𝑟𝑜𝑚𝑁𝑜𝑑𝑒(𝑙)=𝑛

 

∀𝑠 ∈ 𝑁𝑠, 𝑛 ∈ 𝑁𝑛          (14.2) 

𝑃𝑖𝑛,𝑠
𝑝=2

+𝑃𝑖𝑛,𝑠
𝑝=2

= 𝐷𝑒𝑚𝑛 − 𝐿𝐿𝑛,𝑠
𝑝=2

+ ∑ 𝐹𝑙,𝑠
𝑝=2

𝑙∈𝑁𝑙|𝑇𝑜𝑁𝑜𝑑𝑒(𝑙)=𝑛

− ∑ 𝐹𝑙,𝑠
𝑝=2

𝑙∈𝑁𝑙|𝐹𝑟𝑜𝑚𝑁𝑜𝑑𝑒(𝑙)=𝑛

 

∀𝑠 ∈ 𝑁𝑠, 𝑛 ∈ 𝑁𝑛          (14.3) 

Power transfers must respect line rating limits according to network investments in preventive 

and corrective mode and this is shown in Eq. (14.4) and (14.5). Eq. (14.6) dictates that a 

candidate line can be built either in preventive or corrective mode. 

|𝐹𝑙,𝑠
𝑝=1

| ≤ 𝑋�̅�𝐴𝑠,𝑙𝑋𝑙 ∀𝑙 ∈ 𝑁𝑙,𝑠 ∈ 𝑁𝑠(14.4) 

|𝐹𝑙,𝑠
𝑝=2

| ≤ 𝑋�̅�𝐴𝑠,𝑙 (𝑋𝑙 + 𝑌𝑙,𝑠)∀𝑙 ∈ 𝑁𝑙, 𝑠 ∈ 𝑁𝑠(14.5) 

𝑋𝑙 + 𝑌𝑙,𝑠 ≤ 1∀𝑙 ∈ 𝑁𝑙, 𝑠 ∈ 𝑁𝑠(14.6) 

Disjunctive approach is used to represent compliance with second Kirchhoff’s law in case a 

line is built and available as shown by Eq. (7)-(10). This representation also permits 

endogenous relaxation of the following constraints if a line is not built since M is an extremely 

large number. Note that when a line is built in corrective mode, it becomes available only in 

period 2. 

𝐹𝑙,𝑠
𝑝=1

≤ 𝑏𝑙(𝜃𝐹𝑟𝑜𝑚𝑁𝑜𝑑𝑒(𝑙),𝑠
𝑝=1

− 𝜃𝑇𝑜𝑁𝑜𝑑𝑒(𝑙),𝑠
𝑝=1

) + 𝑀(1 − 𝑋𝑙𝐴𝑠,𝑙)∀𝑙 ∈ 𝑁𝑙, 𝑠 ∈ 𝑁𝑠(14.7) 

𝐹𝑙,𝑠
𝑝=1

≥ 𝑏𝑙(𝜃𝐹𝑟𝑜𝑚𝑁𝑜𝑑𝑒(𝑙),𝑠
𝑝=1

− 𝜃𝑇𝑜𝑁𝑜𝑑𝑒(𝑙),𝑠
𝑝=1

) − 𝑀(1 − 𝑋𝑙𝐴𝑠,𝑙)∀𝑙 ∈ 𝑁𝑙, 𝑠 ∈ 𝑁𝑠(14.8) 

𝐹𝑙,𝑠
𝑝=2

≤ 𝑏𝑙(𝜃𝐹𝑟𝑜𝑚𝑁𝑜𝑑𝑒(𝑙),𝑠
𝑝=2

− 𝜃𝑇𝑜𝑁𝑜𝑑𝑒(𝑙),𝑠
𝑝=2

) + 𝑀(1 − (𝑋𝑙 + 𝑌𝑙,𝑠)𝐴𝑠,𝑙)∀𝑙 ∈ 𝑁𝑙, 𝑠 ∈ 𝑁𝑠(14.9) 

𝐹𝑙,𝑠
𝑝=2

≥ 𝑏𝑙(𝜃𝐹𝑟𝑜𝑚𝑁𝑜𝑑𝑒(𝑙),𝑠
𝑝=2

− 𝜃𝑇𝑜𝑁𝑜𝑑𝑒(𝑙),𝑠
𝑝=2

) −𝑀(1 − (𝑋𝑙 + 𝑌𝑙,𝑠)𝐴𝑠,𝑙)∀𝑙 ∈ 𝑁𝑙, 𝑠 ∈ 𝑁𝑠(14.10) 

Further equations constrain generation production to be lower than (or equal to) corresponding 

installed capacity and also allow us to ensure N-1 robustness (by equalising unsupplied 

demand variables to zero under N-1 events). All above variables are continuous and positive 
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except for transfers and voltage angles that can be also negative, and X, Y and Z which are 

binary. The model has been implemented in FICO Xpress. 

Nomenclature 

Parameters 

𝐴𝑠,𝑙 Availability status (available or outaged) of line l during state s 0/1 
𝑏𝑙 Admittance of line l [p.u.] 

𝐷𝑒𝑚𝑛 Demand in node n [MW] 
M Large number, big M number [MW] 
𝑉𝑜𝐿𝐿 Value of lost load [₤/MWh] 
𝑋�̅� Rating of candidate line l [MW] 
𝛿𝑝=𝑡 Duration of period t [h] 

𝜋𝑙
𝐿𝑝

 Investment cost of line l in preventive mode [₤/yr] 

𝜋𝑙
𝐿𝑐  Investment cost of line l in corrective mode [₤/yr] 

𝜋𝑛
𝐺𝑖  Energy purchase price from main system [₤/MWh] 

𝜋𝑛
𝐺𝑒_𝑣 Fuel cost of backup generating unit [₤/MWh] 

𝜋𝑛
𝐺𝑒_𝑓

 Fixed cost of backup generating unit (i.e. rental fee) [₤/event] 

𝜌𝑠 Probability of state s (s = 0 corresponds to the intact system) [p.u.] 

 

Variables 

𝑋𝑙 Investment in line l (upfront, preventive mode) 0/1 
𝑌𝑙,𝑠 Investment in line l during state s (corrective mode) 0/1 

𝐿𝐿𝑛,𝑠
𝑝=𝑡

 Lost load in node n during state s and period t [MW] 

𝑃𝑖𝑛,𝑠
𝑝=𝑡

 Energy purchased from main system in node n during state s and period t [MW] 

𝑃𝑒𝑛,𝑠
𝑝=𝑡

 Energy produced by backup generating unit in node n during state s and period t [MW] 

𝑍𝑛,𝑠 Rental/use of backup generating unit in node n during state s 0/1 

𝐹𝑙,𝑠
𝑝=𝑡

 Power transfer through line l in state s and period t [MW] 

𝜃𝑛,𝑠
𝑝=𝑡

 Voltage angle in node n during state s and period t Rad 

 

Sets 

𝑁𝑛 Set of nodes (equal to set of generators)  
𝑁𝑠 Set of states  
𝑁𝑙 Set of candidate lines  

 

13.15 Consumer-driven distribution network planning 

The current distribution operation and planning framework is rather centralised. The 

distribution network operator (DNO) makes decisions on congestion management and 

network upgrades without communicating with the consumers and taking into account their 

actual valuation of electricity supply and flexibility regarding energy use. This valuation is 

generally assumed identical for all consumers and identical for every unit of energy supplied, 

irrespectively of the specific service it provides to the consumer. Furthermore, during an 

outage, partial shedding of each consumer’s demand is not possible; their whole demand is 

either served or shed, implying low reliability levels. In order to avoid network overloading 
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during such conditions, a portion of the consumers is completely disconnected from the 

network, implying unfair treatment of different consumers. Finally, the flexibility of consumers 

to shift in time the operation of some of their appliances is not taken into account. As a result 

of the above paradigm, network charges are based on long-term socialised impacts of 

consumers’ demand on the network and do not recognise the differentiated impacts of 

individual consumers’ choices. 

The envisaged roll-out of smart metering provides a unique opportunity for consumers to 

communicate their individual preferences and flexibility. Building on this opportunity, a novel 

framework facilitating the integration of consumers’ choices in distribution network operation 

and planning decisions has been developed. An integrated modelling approach is employed 

to represent two different aspects of consumers’ behaviour. The first one is associated with 

their price elasticity i.e. the decreasing valuation of energy supply with an increasing scarcity 

price under outage conditions, while the second one captures their flexibility to shift the 

operation of their loads in time. According to the input parameters, this approach is able to 

model consumers’ behaviour with one or both of the above aspects. This model is integrated 

in a distribution network planning framework with Sequential Monte Carlo (SMC) simulation of 

network outages to assess the impacts of consumers’ behaviour. 

The main conclusions stemming from case studies in different test networks examined in this 

report are the following: 

 Higher price elasticity and shifting flexibility of consumers results in lower energy shedding 

costs. 

 As a result, higher price elasticity and shifting flexibility tends to avoid / postpone network 

upgrades. 

 This value of consumers’ price elasticity and shifting flexibility is increased with a 

decreasing network reliability. 

 Consumers with lower price elasticity (higher valuation of electricity supply) enjoy higher 

security of supply at the expense of higher network charges, while consumers with higher 

price elasticity (lower valuation of electricity supply) are rewarded for their lower security 

of supply through lower network charges. 

 Consumers with higher shifting flexibility enjoy higher security of supply and network 

charges. 

In the distribution network planning framework, the planner determines the network assets 

(transformers and lines) to be built or reinforced by minimising the total cost of the network 

within the planning horizon. This total cost is given by the summation of the annuitized 

investments costs associated with building / reinforcing assets and the expected annual costs 

of energy not supplied for the served consumers, as expressed by equation (15.1), where 𝑛 

is the index of years in the planning horizon, 𝑁 is the length of the time horizon in years, 𝑡 is 

the index of simulation time steps (hours) within a year, 𝑇 is the size of a year in simulation 

time steps, and 𝑙 and 𝑁𝑙 is the index and total number of consumers in the network. This total 
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cost minimisation problem is subject to power flow constraints ensuring that the network 

operates within its thermal and voltage limits. 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 =
1

𝑁
(∑∑∑ 𝐷𝑈𝑙(𝑛, 𝑡)

𝑙=𝑁𝑙

𝑙=1

𝑡=𝑇

𝑡=1

𝑛=𝑁

𝑛=1

)+ 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡𝑠 (15.1) 

Failures of network transformers and lines are modelled by employing Sequential Monte Carlo 

(SMC) simulation. Given the Probability Distribution Functions (PDF) of failure occurrences 

and duration of restoration for these network components, SMC simulation provides the state 

of each network component (normal operation or failure) at each time step of the planning 

horizon. Exponential PDF are employed in this report for modelling failure occurrences and 

duration of restoration, as expressed by equations (15.2) and (15.3), where 𝜆1 is the average 

number of failures per year, and 𝜆2 is the average duration of restoration (𝜆1 and 𝜆2 constitute 

input parameters which are determined based on historical data) and 𝜏 is the index of 

restoration durations. 

𝑓𝑓𝑎𝑖𝑙(𝑡) = 𝜆1𝑒
−𝜆1𝑡 (15.2) 

𝑓𝑟𝑒𝑠𝑡𝑜𝑟(𝜏) = 𝜆2𝑒
−𝜆2𝜏 (15.3) 

Two distinct modelling approaches are employed to represent the preferences and flexibility 

of consumers. The first one represents the valuation of different demand levels by the 

consumers through “price-demand” functions while the second captures their ability to shift 

their energy requirements in time accounting for the relevant inconvenience costs. 

A piece-wise linear decreasing function is employed to model the consumers’ price demand 

function, which is expressed by equation (15.4), where 𝑝 denotes the scarcity price, 𝐷 denotes 

the consumers’ demand and 𝐷𝑏 represents the consumers’ baseline demand, i.e. the demand 

consumers request when there is no failure in the network and the scarcity price is zero. The 

first section of the function -corresponding to demand levels in the interval (0, 𝑎𝐷𝑏]- represents 

the price-demand relationship for critical loads, while the second section -corresponding to 

demand levels in the interval [𝑎𝐷𝑏, 𝐷𝑏]- represents the price-demand relationship for non-

critical loads. The cost of energy not supplied is given by equation (5), where 𝛽𝑉𝑜𝐿𝐿 

corresponds to the cost of energy not supplied for a demand level of 𝑎𝐷𝑏. 

𝑝(𝐷) = {

, ∀𝐷 ≤ 𝑎𝐷𝑏
, ∀𝑎𝐷𝑏 ≤ 𝐷 ≤ 𝐷𝑏
0, ∀𝐷 > 𝐷𝑏

 
(15.4) 

𝐷𝑈(𝐷) =

{
 
 

 
 
𝛽𝑉𝑜𝐿𝐿

2
𝐷𝑏(1 − 𝛼) +

𝑉𝑜𝐿𝐿

2𝛼𝐷𝑏  
((𝛽 − 1)𝐷 + 𝛼(1 + 𝛽)𝐷𝑏)(𝛼𝐷𝑏 − 𝐷), ∀𝐷 ≤ 𝑎𝐷𝑏

𝛽𝑉𝑜𝐿𝐿

2𝐷𝑏(1 − 𝛼)
(𝐷𝑏 − 𝐷)

2, ∀𝑎𝐷𝑏 ≤ 𝐷 ≤ 𝐷𝑏

0, ∀𝐷 > 𝐷𝑏

 

(15.5) 



 

372 
 

In order to capture the demand’s time shifting ability, a new model has been developed by 

Imperial College. In this model, the demand of a consumer with shifting capability at a time 

period 𝑡 can be reduced (implying that demand is shifted from 𝑡 to another period) or increased 

(implying that demand is shifted from another period to 𝑡). It is assumed that demand shifting 

is energy neutral (i.e. the total size of demand reductions is equal to the total size of demand 

increases) within the time window defined by the start of an outage and 24 hours after the end 

of it, as expressed by equation (15.6). The cost of consumers’ inconvenience for each unit of 

energy shifted is denoted by VoSL (value of shifting load) and defines the level of time-shifting 

flexibility of each consumer (a high VoSL implies low time-shifting flexibility and vice-versa), 

as expressed by equation (15.7). 

∑ 𝐷𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡)
𝑡𝑒𝑛𝑑+24
𝑡𝑠𝑡𝑎𝑟𝑡

= 0         (15.6) 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑆ℎ𝑖𝑓𝑡𝑖𝑛𝑔 = −𝑉𝑜𝑆𝐿 × ∑ 𝐷𝑠ℎ𝑖𝑓𝑡𝑒𝑑
𝑡𝑒𝑛𝑑+24
𝑡𝑠𝑡𝑎𝑟𝑡

   , 𝑓𝑜𝑟 𝐷𝑠ℎ𝑖𝑓𝑡𝑒𝑑 ≤ 0  (15.7) 
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14 APPENDIX B – DATA AND NETWORKS 

The long term development statements for all GB DNOs have been used to establish the 

typical EHV and 132 kV networks configurations and prevailing asset characteristic used. HV 

network of seven DNOs have been used to estimate the typical characteristics of HV main 

and spur part of networks. Load profiles from Low Carbon London project and Elexon’s 

electricity user demand profiles have been used to establish load duration shape and typical 

load factors per voltage levels. Regulatory reporting pack and quality of supply reporting data 

are analysed. These data and in consultation with data working subgroup the range of asset 

upgrade cost, asset register quantity and statistic associated with network failures, outages 

and service restoration procedures are established. 

HV feeders are split into 4 mixes as shown in Table 14.1. Mix 1 represents a system dominated 

with underground cables, e.g. urban systems. Mix 2 is a system with 75% or more 

underground cables and 25% or less overhead lines, e.g. semi-urban systems. Mix 3 and Mix 

4 are systems dominated by overhead lines. The share of overhead lines in Mix 3 is less than 

75% but greater than 50%, while in Mix 4, the share of overhead lines is greater than 75%. 

Mix 3 and Mix 4 constitute semi-rural and rural systems respectively.  

 

Table 14.1: Systems with different mixes of underground cables and overhead lines  

 

 

The GB HV systems are grouped into the 4 network categories (mix 1 – mix 4). For each mix, 

the number of HV systems is estimated and shown as a pie chart in Figure 14.1 (right). Data 

we have analysed show that the majority (67%) of HV feeders are Mix 1 type followed by Mix 

3, Mix 4 and the last one is Mix 2 type. 

Figure 14.1 (left) shows the cumulative probability of feeder’s failure rates for each of mixes. 

A majority of the feeders have relatively low failure rates (<0.1 occurrence per km per year).  

The number of networks with higher failure rates decreases, Figure 14.1 (left) shows rapid 

saturation for networks with failure rates more than 0.3 occurrence per km per year. 
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Figure 14.1: Cumulative probability of feeder’s failure rates and distribution of mixes 

Other details that have been modelled in the studies are the number of distribution 

transformers and the average distance between distribution transformers. Figure 14.2 shows 

the distribution for Mix 1 feeders. We find that the majority of Mix 1 feeders supply six 

distribution transformers with average distance of transformers between 400 and 500 m. The 

database contains significant number of a single supplied distribution transformer per feeder 

with distance to primary less than 100 m. 

 

Figure 14.2: Breakdown of Mix 1 feeders per number of distribution transformers and the average distance between 
distribution transformers 

Figure 14.3 shows the case for Mix 2 feeders. Data show that the majority of Mix 2 feeders 

supply 16-17 distribution transformers with the average distance between 500-600 m. This is 
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followed by feeders connected with 8-9 distribution transformers and 12-13 with the same 

average distance. 

 

Figure 14.3: Breakdown of Mix 2 feeders per number of distribution transformers and the average distance between 
distribution transformers 

Figure 14.4 shows the case for Mix 3 feeders. Data show that the majority of Mix 3 feeders 

supply 25 - 29 distribution transformers with the average distance of transformers between 

500 and 600 m. This is followed by feeders connected with 15 - 19 distribution transformers 

with the same average distance. 

 

Figure 14.4: Breakdown of Mix 3 feeders per number of distribution transformers and the average distance between 
distribution transformers 

Figure 14.5 shows the case for Mix 4 feeders. Data show that the majority of Mix 3 feeders 

supply 35 - 39 distribution transformers with the average distance of transformers between 
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600 and 700 m. This is followed by feeders connected with 15 - 19 distribution transformers 

with the same average distance. 

 

 

Figure 14.5: Breakdown of Mix 4 feeders per number of distribution transformers and the average distance between 
distribution transformers 

 

Figure 14.6 to Figure 14.9 show distribution of average distance between distribution 

transformers and number of distribution transformers per HV spur for Mix 1 to 4 type of 

networks, respectively. 

 

 

Figure 14.6: Distribution of average distance between distribution transformers and number of distribution transformers 
supplied from HV spur in Mix 1 type networks 
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Figure 14.7: Distribution of average distance between distribution transformers and number of distribution transformers 
supplied from HV spur in Mix 2 type networks 

 

 

Figure 14.8: Distribution of average distance between distribution transformers and number of distribution transformers 
supplied from HV spur in Mix 3 type networks 

 

 

Figure 14.9: Distribution of average distance between distribution transformers and number of distribution transformers 
supplied from HV spur in Mix 4 type networks 

 

Figure 14.10 shows the number of simultaneous faults per day for nine GB DNOs during five-

year period.  
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Figure 14.10: Statistics of the number of simultaneous faults per day for GB DNOs during five year period 

 

14.1 Typical network topologies 

Figure 14.11 show illustration of EHV test network supplying, as shown, three primary 

substations and the options connection to adjacent network. 

 

Figure 14.11: Illustration of EHV test network showing case with 3 primary substations and the optional connection to 
adjacent network 

Figure 14.12 shows illustration of HV test network with different design redundancy options. 

 

Figure 14.12: Illustration of HV test network with different design redundancy options  
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Figure 14.13 shows the illustration of HV spur supplying one to five (five is shown) distribution 

transformers and with an option to upgrade to main by adding backfeed connection. 

 

Figure 14.13: Illustration of HV spur with an option to upgrade to main by adding backfeed connection 

 

14.2 Asset Cost 

Table 14.2 shows agreed average asset replacement unit cost. Agreed sensitivity range is 

±20%. 

Table 14.2: Average asset replacement unit cost (£k/unit), sensitivity range is ±20% 

Voltage level Asset Name Units Cost (£k/unit) 

132kV Overhead Line: new trident single circuit line km 87 

 Overhead Line: double circuit tower km 220 

 Overhead Line: restring to upgrade km 53 

 UG Cable (Non Pressurised) km 1215 

 CB (Air Insulated Busbars) (ID&OD) (GM) Each 500 

 CB (Gas Insulated Busbars) (ID) (GM) Each 900 

 Switchgear – Other Each 45 

 Transformer Each 1100 

EHV Overhead Line Pole / Tower km 39 / 46 

 UG Cable km 290 

 CB (Air Insulated Busbars) (ID&OD) (GM) Each 75 

 CB (Gas Insulated Busbars) (ID) (GM) Each 110 

 RMU Each 100 

 Switch (GM) Each 60 

 Switch (PM) Each 10 

 Switchgear – Other Each 10 

 Transformer Each 400 

HV Overhead Pole Line km 30 

 UG Cable km 110 

 CB (GM) Primary Each 40 

 CB (GM) Secondary Each 8 

 Switch (GM) Each 8 

 RMU Each 12 

 CB (PM) Each 8 

 Switch (PM) Each 10 

 Switchgear – Other (PM) Each 2.9 

 Transformer (PM) Low loss Each 4.3 

 Transformer (GM) Each 15 

LV Overhead Pole Line km 19 

 UG Cable km 101 

 CB Each 5 

 Pillar at Substation Each 9.5 

Spur DT1 DT2 DT3 DT4 

L1 L2 L3 L4 

f.b.d. or automation 

Main 

DT5 

L5 
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 UGB and Pillar – Other Each 5.5 

 Board Each 18 

 Link box Each 1.5 

 Overhead line link Each 0.75 

 Transformer/Regulators Each 3 

 

Annuitization factor for CAPEX is 10. 

14.3 Detailed Cable and Substation Costs 

Table 14.3 contains agreed detailed cost for a set of cables with different cross sectional area. 

Table 14.3: 33 kV cable cost 

Cable Rating (Amps) 
(direct laying) 

Cost (£/km) 

33kV 185mm2 460 – 445 227,390 

33kV 240mm2 530-520 237,130 

33kV 400mm2 690-630 261,910 

33kV 500mm2 760 - 700 283,980 

 

Agreed reinforcement cost of a HV/LV substation: 

 Urban: Larger transformer plus new LV board plus jointing ~ £23k 

 Rural: Lager PMT plus pillar plus LV network ~ £10k 

 

Primary substation 

Table 14.4 and Table 14.5 shows agreed typical cost of primary substations including civils, 

protection, 11 kV transformer and bus section CBs and 5 km EHV cable per transformer and 

a spare CB at BSP. 

Table 14.4: Typical cost of primary substations including civils, protection, 11 kV transformer and bus section CBs and 5 
km EHV cable per transformer and a spare CB at BSP 

 Asset Unit £k No subtotal £k Total £k 

4/8 
MVA 
x 4 

4/8 MVA 134 4 536  

185 cable 237 20 4740  

Civils, protection  500  

11kV Tx CB 20 4 80  

11kV B/S CB 20 3 60 5916 

7.5/15 
MVA 
x 3 

7.5/15 MVA 162 3 486  

185 cable 237 15 3555  

Civils, protection  500  

11kV Tx CB 20 3 60  

11kV B/S CB 20 2 40 4641 

16/32 
MVA 
x 2 

16/32 MVA 228 2 456  

185 cable 237 10 2370  

Civils, protection  500  
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 Asset Unit £k No subtotal £k Total £k 

11kV Tx CB 2 20 40  

11kV B/S CB 1 20 20 3386 

 

Table 14.5: Typical cost of primary substations including civils, protection, 11 kV transformer and bus section CBs and 5 
km EHV cable per transformer and a spare CB at BSP 

Rated voltage (kV) Rated power (MVA) Typical cost of substation (£k) 

33/11 4x4/8 5,916 

 3x7.5/15 4,641 

 2x16/32 3,386 

 

To match the same N-1 emergency rating substation cost is adjusted by plotting cost per 

number of transformers in a substation and finding a linear trendline as shown in Figure 14.14. 

 

Figure 14.14: Typical cost of primary substation 

Linearised typical cost of primary substation including 5 km of cables per transformer is then 

(£66k/MVA x N - £84k/MVA) x N x ER, where N is the number of transformers and ER 

emergency rating (MVA). Obtained cost is summarised in Table 14.6. In a similar way a cost 

of substation with one km of transformers’ feeder cable is estimated and presented in the 

Table. 

Table 14.6: Substation cost including cost of cables and switchgears but excluding land cost 

EHV/HV Substation 
Cost (£k/year) 

Cable 5 km Cable 1 km 

2x30 MVA 285.9 129.9 

3x15 MVA 511.4 194.4 

4x10 MVA 718.5 259 
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Bulk supply substation 

Table 14.7 and Table 14.8 shows agreed typical cost of BSP substations including civils, 

protection, 11 kV transformer and bus section CBs and 5 km 132 kV cable per transformer 

and a spare CB at GSP. 

Table 14.7: Typical cost of bulk supply substation assuming 5 km 132 kV cable per transformer and a spare CB at GSP; 
note a assumed cost of transformer 

 Asset Unit £k No subtotal £k Total £k 

22.5/45 x 4 22.5/45 MVA 400a 4 1,600  

300 cable 800 20 16,000  

Civils, protection  500  

33kV Tx CB 90 4 360  

33kV B/S CB 90 3 270 18,730 

30/60 x 3 30/60 MVA 500 3 1,500  

300 cable 800 15 12,000  

Civils, protection  500  

33kV Tx CB 90 3 270  

33kV B/S CB 90 2 180 14,450 

45/90 x 2 45/90 MVA 559 2 1,118  

300 cable 800 10 8,000  

Civils, protection  500  

33kV Tx CB 90 2 180  

33kV B/S CB 90 1 90 9,888 

 

Table 14.8: Typical cost of bulk supply substation assuming 5 km 132 kV cable per transformer and a spare CB at GSP 

Rated voltage (kV) Rated power (MVA) Typical cost of substation (£k) 

132/33 4x22.5/45 18,730 

 3x30/60 14,450 

 2x45/90 9,888 

 

To match the same N-1 emergency rating bulk supply substation cost is adjusted by plotting 

cost per MVA against the number of transformers in a substation and finding a linear trendline 

as shown in Figure 14.15. 
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Figure 14.15: Typical cost of bulk supply substation 

Linearised typical cost of bulk supply substation including 5 km of cables per transformer is 

(£24.6k/MVA x N + £6k/MVA) x N x ER, where N is the number of transformers and ER 

emergency rating (MVA). Obtained cost is summarised in Table 14.9. In addition, in the same 

way substation cost with one km of transformer feeder cable is estimated. 

 

Table 14.9: Substation cost 

132kV/EHV Substation 
Cost (£k/year) 

Cable 5 km Cable 1km 

2x90 MVA 993.5 353.5 

3x45 MVA 1,076.7 356.7 

4x30 MVA 1,251.8 398.5 

 

14.4 Load Duration Curve 

Figure 14.16 shows normalised load duration curves with load factors of about 45% and 63%. 

 

Figure 14.16: Load duration curves with load factors about 45% and 63% 
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Table 14.10 shows typical range of load factors at different voltage levels. 

Table 14.10: Typical range of load factors 

Voltage level Load factor (annual) Load factor (maintenance window) 

LV feeder 20-45%  

HV/LV PMT 30-50%  

HV/LV GMT 40-60% 35-55% 

HV 45-65% 40-60% 

EHV/HV 50-70% 45-65% 

EHV 50-70% 45-65% 

132kV/EHV 55-75% 50-70% 

132kV 55-80% 50-70% 

 

14.5 Generalised Range of Reliability Related Parameters 

Table 14.11 shows agreed range of failure rates, repair times, and upgrade and repair cost. 

Table 14.11: Reliability related parameters 

Asset Failure rate 
(%/unit.year) 

Urgent 
repair time 

(hours) 

Average 
normal repair 
time (hours) 

Upgrade 
cost 

(£k/unit) 

Repair 
cost 
(£k) 

132 kV overhead line (km) 2-15 24 240 87 3.8 

132 kV underground cable (km) 2-8 48-120 240 1,215 50 

132kV/EHV transformer 1-10 240 720 1,100 1,000 

EHV overhead line (km) 2-15 12 120 39-46 3.8 

EHV underground cable (km) 2-8 24-72 240 290 19.5 

EHV/HV transformer 1-10 192 720 400 250 

EHV and HV busbars 0.1 24 240   

HV overhead line (km) 5-8.4-20 6 120 30 2.1 

HV underground cable (km) 2-4.8-10 6-18 120 110 8.4 

HV/LV PMT transformer 2-20 8-10 24 4.3 4 

HV/LV GMT transformer 2-20 24 48 15 7 

LV overhead line (km) 10-50 4 4 19 1.1 

LV underground cable (km) 10-50 8 8 101 3.3 

Note: average normal repair time assumes a half of regular repair time; OH line common mode failure 

rate sensitivity 0, 5% and 10% of single outage failure rate 

Table 14.12 shows agreed transformer feeder maintenance parameters. 

Table 14.12: Transformer feeder maintenance parameters 

Asset Typical frequency 
(%/year) 

Emergency return to 
service time (hours) 

Outage time 
(hours) 

132kV/EHV transformer 
circuit maintenance 

12.5% 12 240 

EHV/HV transformer circuit 
maintenance 

12.5% 9 120 

HV/LV GMT 10% 8 8 

Note: depending on the number of operations of OLTC maintenance might be carried out sooner 

 

Table 14.13 shows agreed durations of networks reconfiguration. 
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Table 14.13: Network reconfiguration duration 

Switching Feeder resupply time 
(minutes) 

Backfeed resupply time 
(minutes) 

Protection 0 0 

Automation 3 3 

Remote control 10 10 

Manual switching 30-60 50 

Note: each additional stage of manual switching adds another 20 minutes; remote control of switchgear 

assumed as available in all primary and bulk supply substations, EHV and 132 kV networks. 

 

List of alternative supply options: 

 Resupply with mobile generation within 3-6 hours for HV outages and on average 4.5-10 

hours for primary and bulk transformers, EHV, and 132 kV circuits with maximum of 10 

MW of units used. Renting cost of 500 kW and below unit is £500-1,750/day while of 1,000 

kW unit is £1,000-3,500/day. 

 Temporary cable laying within 36 hours at a cost of £50,000-200,000. This option is 

relevant for outage of EHV/HV and 132kV/EHV, HV transformers and 132kV underground 

cables.  

 Voltage reduction within 3 minutes and each 1% V corresponds to 1.15% MW reduction. 
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15 GLOSSARY 

Term Description 

ACS Amalgamated Customer Surveys 

ANM Active Network Management 

BOCS Black Out Case Study 

BS British Standard 

BSP Bulk Supply Point 

CB Circuit Breaker 

CBA Cost Benefit Analysis 

CDF Customer Damage Function 

CI Customer Interruption. The number of customers whose supply have been 
interrupted per 100 customers per year over all incidents, where an 
interruption of supply lasts for three minutes or longer, excluding 
reinterruptions to the supply of customers previously interrupted during the 
same incident. 

CMF Common Mode Failure 

CML Customer Minutes Lost. The average customer minutes lost per customer 
per year, where an interruption of supply to customer(s) lasts for three 
minutes or longer. 

CPS Cyber Physical System 

CS Customer Surveys 

CVaR Conditional Value at Risk is a risk assessment technique that could be used 
to reduce the probability of incurring large loses 

DER Distributed Energy Resources 

DG Distributed Generation. Any generation which is connected to the local 
distribution network, as well as combined heat and power schemes of any 
scale.  

DLR Dynamic Line Rating 

DNO Distribution Network Operator 

DSR Demand Side Response 

EENS Expected Energy Not Supplied is the mathematical expectation of the energy 
which exceeds the available capacity taking into account possible outages 

EHV Extra High Voltage distribution networks with voltage 33 kV and above, 
including 66 kV networks 

ELCC Effective Load Carrying Capability is the amount of additional incremental 
load a resource could be expected to serve taking into account probabilistic 
nature of the electricity supply system 

ENS Energy Not Supplied 

EO/C Economic Output to Energy Consumption 

ES Energy Storage 

Failure 
rate 

The number of unplanned failures per unit per year of the specific category of 
distribution assets 

GB Great Britain 

HILP High Impact Low Probability (HILP) are extreme events that could result in 
the prolonged loss of supply to localities that have a high gross [economic] 
value added (GVA). HILP activity relates to increasing the security of supply, 
to localities that have a high GVA, to levels that exceeds P2/6 recommended 
levels. 

HV High Voltage distribution networks with voltage 1 kV and above up to but not 
including 22 kV, including 11 kV and 20 kV 

I&C Industrial and Commercial customers 

ICT Information and Communication Technology  
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Term Description 

kVA Kilo Volt Ampere 

kWh Kilo Watt hour 

LCNF Low Carbon Network Fund is a mechanism introduced under the fifth 
distribution price control review to encourage the DNOs to prepare for the 
role they would play as GB moves to a low carbon economy... 

LTC Load Transfer Capability 

LV Low Voltage refers to voltages up to, but not including, 1 kV 

MCS  Mapped Customer Surveys 

Min-Max 
Regret 

An optimisation approach which minimises the maximum of regret cost 

MTBF Mean Time Between Failures 

MTTR 
(repair) 

Mean Time To Repair is the average time expressed in hours needed to 
repair the faulty component in question. In this case, the faulty component 
has been isolated in order for the repair process to proceed. MTTR 
abbreviation is shared with Mean Time to Restore but from context it is 
possible to distinguish between them. 

MTTR 
(restore) 

Mean Time To Restore; the average time expressed in hours needed to 
restore the supply of the customers being interrupted. This process may 
require urgent short-term repair. 

MVA Mega Volt Ampere 

MW Mega Watt 

MWh Mega Watt hour 

N-1 The degree of network redundancy where the system can still supply all 
loads even if one component of it fails to function. 

NOP Normally Open Point 

NPV Net Present Value is the discounted sum of future cash flows, whether 
positive or negative, minus any initial investment. 

Ofgem Office of Gas and Electricity Markets 

OH Network dominated with over-head lines 

OHL Over Head Line 

P2 A guidance document on system planning and network capacity 
requirements and details the minimum standards for the security of supply of 
distribution networks  

QB Quadrature-booster 

ROA Real Options Analysis 

SAIDI System average interruption duration index is the average duration of 
sustained consumer interruptions per consumer occurring during the analysis 
period. It is the average time consumers were without power. It is determined 
by dividing the sum of all sustained consumer interruption durations, in 
minutes, by the total number of consumers served [167] 

SAIFI System average interruption frequency index The average frequency of 
sustained interruptions per consumer occurring during the analysis period. It 
is calculated by dividing the total number of sustained consumer interruptions 
by the total number of consumers served [167] 

SME Small and Medium-sized Enterprises 

SOC State of Charge of energy storage 

SOP Soft Open Point is power electronic devices installed in place of normally-
open points in electrical power distribution network 

SPS Special Protection Scheme 

UG Network dominated with underground cables  

UGC Underground cables 
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Term Description 

VoLG Value of Loss Generation is the aggregated or average value of outage costs 
across distributed generation 

VoLL Value of Loss Load is the aggregated or average value of outage costs 
across the whole range of consumers in the electricity supply industry [167]. 
London Economics report estimate it at £17,000/MWh as a load-share 

weighted average across domestic and SME customers. 

VoSL Value of Shift Load 

WTA Willingness To Accept is an approach to determine how much the consumers 
are willing to pay to avoid an outage [167] 
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